qgallouedec HF staff commited on
Commit
aff049e
1 Parent(s): 63244f8

Upload . with huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +5 -5
  2. replay.mp4 +2 -2
README.md CHANGED
@@ -5,7 +5,7 @@ tags:
5
  - reinforcement-learning
6
  - sample-factory
7
  model-index:
8
- - name: APPO
9
  results:
10
  - task:
11
  type: reinforcement-learning
@@ -15,12 +15,12 @@ model-index:
15
  type: pick-place-v2
16
  metrics:
17
  - type: mean_reward
18
- value: 23.31 +/- 11.58
19
  name: mean_reward
20
  verified: false
21
  ---
22
 
23
- A(n) **APPO** model trained on the **pick-place-v2** environment.
24
 
25
  This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
  Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
@@ -38,7 +38,7 @@ python -m sample_factory.huggingface.load_from_hub -r qgallouedec/pick-place-v2-
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
- python -m enjoy --algo=APPO --env=pick-place-v2 --train_dir=./train_dir --experiment=pick-place-v2-sf
42
  ```
43
 
44
 
@@ -49,7 +49,7 @@ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
- python -m train --algo=APPO --env=pick-place-v2 --train_dir=./train_dir --experiment=pick-place-v2-sf --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
 
5
  - reinforcement-learning
6
  - sample-factory
7
  model-index:
8
+ - name: PPO
9
  results:
10
  - task:
11
  type: reinforcement-learning
 
15
  type: pick-place-v2
16
  metrics:
17
  - type: mean_reward
18
+ value: 24.42 +/- 7.77
19
  name: mean_reward
20
  verified: false
21
  ---
22
 
23
+ A(n) **PPO** model trained on the **pick-place-v2** environment.
24
 
25
  This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
  Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
 
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
+ python -m enjoy --algo=PPO --env=pick-place-v2 --train_dir=./train_dir --experiment=pick-place-v2-sf
42
  ```
43
 
44
 
 
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
+ python -m train --algo=PPO --env=pick-place-v2 --train_dir=./train_dir --experiment=pick-place-v2-sf --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4028f35554118c1e424ec2f13d27c0b0ddf9995bb833671c40b104e4c3af1c83
3
- size 3398790
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f9f8146633325df4e663a71d66827f81598ffa38b7bee2b3b8305e1f5810e00
3
+ size 3419609