Quentin Gallouédec
commited on
Commit
•
1040bd3
1
Parent(s):
4dffa12
Initial commit
Browse files- .gitattributes +1 -0
- README.md +79 -0
- args.yml +81 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- sac-MountainCarContinuous-v0.zip +3 -0
- sac-MountainCarContinuous-v0/_stable_baselines3_version +1 -0
- sac-MountainCarContinuous-v0/actor.optimizer.pth +3 -0
- sac-MountainCarContinuous-v0/critic.optimizer.pth +3 -0
- sac-MountainCarContinuous-v0/data +124 -0
- sac-MountainCarContinuous-v0/policy.pth +3 -0
- sac-MountainCarContinuous-v0/pytorch_variables.pth +3 -0
- sac-MountainCarContinuous-v0/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCarContinuous-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: MountainCarContinuous-v0
|
16 |
+
type: MountainCarContinuous-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 93.24 +/- 1.44
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **MountainCarContinuous-v0**
|
25 |
+
This is a trained model of a **SAC** agent playing **MountainCarContinuous-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo sac --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo sac --env MountainCarContinuous-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo sac --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo sac --env MountainCarContinuous-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo sac --env MountainCarContinuous-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo sac --env MountainCarContinuous-v0 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 512),
|
66 |
+
('buffer_size', 50000),
|
67 |
+
('ent_coef', 0.1),
|
68 |
+
('gamma', 0.9999),
|
69 |
+
('gradient_steps', 32),
|
70 |
+
('learning_rate', 0.0003),
|
71 |
+
('learning_starts', 0),
|
72 |
+
('n_timesteps', 50000.0),
|
73 |
+
('policy', 'MlpPolicy'),
|
74 |
+
('policy_kwargs', 'dict(log_std_init=-3.67, net_arch=[64, 64])'),
|
75 |
+
('tau', 0.01),
|
76 |
+
('train_freq', 32),
|
77 |
+
('use_sde', True),
|
78 |
+
('normalize', False)])
|
79 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- sac
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- MountainCarContinuous-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1430860601
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - yaml_file
|
81 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 512
|
4 |
+
- - buffer_size
|
5 |
+
- 50000
|
6 |
+
- - ent_coef
|
7 |
+
- 0.1
|
8 |
+
- - gamma
|
9 |
+
- 0.9999
|
10 |
+
- - gradient_steps
|
11 |
+
- 32
|
12 |
+
- - learning_rate
|
13 |
+
- 0.0003
|
14 |
+
- - learning_starts
|
15 |
+
- 0
|
16 |
+
- - n_timesteps
|
17 |
+
- 50000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(log_std_init=-3.67, net_arch=[64, 64])
|
22 |
+
- - tau
|
23 |
+
- 0.01
|
24 |
+
- - train_freq
|
25 |
+
- 32
|
26 |
+
- - use_sde
|
27 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd32690bf6ea5fd376f7684251f8b47262c627bd361a5606f6478f6a10a89ac9
|
3 |
+
size 264490
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 93.24193690000001, "std_reward": 1.4386798036783188, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:38:45.649356"}
|
sac-MountainCarContinuous-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89a698981cb218c283ec18d8218404e42f28b524bbaaeae15b7f0fd894ae6d3e
|
3 |
+
size 242937
|
sac-MountainCarContinuous-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
sac-MountainCarContinuous-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d70b70fb3131b46bd112be16673f64fa9291b221d128611c51c969a692fc1967
|
3 |
+
size 41702
|
sac-MountainCarContinuous-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca99031af5e28d52cf5a35391a005f235b8f2bc283bbf56519b8ca03d7c918d8
|
3 |
+
size 81337
|
sac-MountainCarContinuous-v0/data
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function SACPolicy.__init__ at 0x7fdc5fd92ca0>",
|
8 |
+
"_build": "<function SACPolicy._build at 0x7fdc5fd92d30>",
|
9 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fdc5fd92dc0>",
|
10 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7fdc5fd92e50>",
|
11 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7fdc5fd92ee0>",
|
12 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7fdc5fd92f70>",
|
13 |
+
"forward": "<function SACPolicy.forward at 0x7fdc5fd9a040>",
|
14 |
+
"_predict": "<function SACPolicy._predict at 0x7fdc5fd9a0d0>",
|
15 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7fdc5fd9a160>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fdc603cdfc0>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"log_std_init": -3.67,
|
22 |
+
"net_arch": [
|
23 |
+
64,
|
24 |
+
64
|
25 |
+
],
|
26 |
+
"use_sde": true
|
27 |
+
},
|
28 |
+
"observation_space": {
|
29 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
30 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
31 |
+
"dtype": "float32",
|
32 |
+
"_shape": [
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"low": "[-1.2 -0.07]",
|
36 |
+
"high": "[0.6 0.07]",
|
37 |
+
"bounded_below": "[ True True]",
|
38 |
+
"bounded_above": "[ True True]",
|
39 |
+
"_np_random": null
|
40 |
+
},
|
41 |
+
"action_space": {
|
42 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
+
":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
44 |
+
"dtype": "float32",
|
45 |
+
"_shape": [
|
46 |
+
1
|
47 |
+
],
|
48 |
+
"low": "[-1.]",
|
49 |
+
"high": "[1.]",
|
50 |
+
"bounded_below": "[ True]",
|
51 |
+
"bounded_above": "[ True]",
|
52 |
+
"_np_random": "RandomState(MT19937)"
|
53 |
+
},
|
54 |
+
"n_envs": 1,
|
55 |
+
"num_timesteps": 50016,
|
56 |
+
"_total_timesteps": 50000,
|
57 |
+
"_num_timesteps_at_start": 0,
|
58 |
+
"seed": 0,
|
59 |
+
"action_noise": null,
|
60 |
+
"start_time": 1671733073573371710,
|
61 |
+
"learning_rate": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
64 |
+
},
|
65 |
+
"tensorboard_log": null,
|
66 |
+
"lr_schedule": {
|
67 |
+
":type:": "<class 'function'>",
|
68 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
69 |
+
},
|
70 |
+
"_last_obs": null,
|
71 |
+
"_last_episode_starts": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
74 |
+
},
|
75 |
+
"_last_original_obs": {
|
76 |
+
":type:": "<class 'numpy.ndarray'>",
|
77 |
+
":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAFc27b5+Q3C7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
|
78 |
+
},
|
79 |
+
"_episode_num": 431,
|
80 |
+
"use_sde": true,
|
81 |
+
"sde_sample_freq": -1,
|
82 |
+
"_current_progress_remaining": -0.000320000000000098,
|
83 |
+
"ep_info_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFckYEnssxyMAWyUS2aMAXSUR0B09mjesPrfdX2UKGgGR0BXS5zDGcWkaAdLVGgIR0B0/zscABDHdX2UKGgGR0BXUOIyj59FaAdLU2gIR0B1C/a/RE4OdX2UKGgGR0BXzP/R3NcGaAdLSmgIR0B1FKrZJ04jdX2UKGgGR0BXveoP07KaaAdLVWgIR0B1IYt16mfodX2UKGgGR0BXf+3lS0jUaAdLSGgIR0B1KlC8e0XxdX2UKGgGR0BXaad1+y7gaAdLVWgIR0B1Nvz+WGATdX2UKGgGR0BXlW1hLGrCaAdLS2gIR0B1P6YUnG83dX2UKGgGR0BXTx+BpYcOaAdLWWgIR0B1TFm4AjptdX2UKGgGR0BXo5gPVd5ZaAdLYGgIR0B1WRwBHTZydX2UKGgGR0BXNsqjJuEVaAdLaWgIR0B1Zfd30PH1dX2UKGgGR0BXgkKE384xaAdLT2gIR0B1cpgDzRQadX2UKGgGR0BXNYOpbUw0aAdLaGgIR0B1f4TIvJzUdX2UKGgGR0BXOtQXQ+lkaAdLaWgIR0B1jG99MK1HdX2UKGgGR0BXNUJrtVrAaAdLaWgIR0B1nTNt65XmdX2UKGgGR0BXOewosqaxaAdLdWgIR0B1qi4YrJ8wdX2UKGgGR0BXNW6Gxlg/aAdLYGgIR0B1tuiGnGbTdX2UKGgGR0BXuK9f1HvuaAdLT2gIR0B1w3e0ojOcdX2UKGgGR0BXCbutwJgLaAdLZmgIR0B10ElWwNb1dX2UKGgGR0BW8sCcPOIJaAdLbWgIR0B13UUqQRwqdX2UKGgGR0BXI28h9srNaAdLamgIR0B17ggRsdkrdX2UKGgGR0BXRSVjZtelaAdLd2gIR0B1+w1zhgmadX2UKGgGR0BXIkaMrEtNaAdLeGgIR0B2C/lxOtW/dX2UKGgGR0BXO5QLux8laAdLa2gIR0B2GN5nlGPQdX2UKGgGR0BW/GkBS1mbaAdLamgIR0B2KaNxVAAydX2UKGgGR0BXE1NpM6BAaAdLZ2gIR0B2NnWOIZZTdX2UKGgGR0BXQXx8UmD2aAdLbGgIR0B2Q1Uo8ZDRdX2UKGgGR0BXQ5kXk5p8aAdLbmgIR0B2VB93KSxJdX2UKGgGR0BXfY5cTrVwaAdLSGgIR0B2XL17IDHPdX2UKGgGR0BW94Kc/dIoaAdLbWgIR0B2aa3lS0jUdX2UKGgGR0BXHotL+PzWaAdLZmgIR0B2enRLK3d9dX2UKGgGR0BXhABxPwd9aAdLSGgIR0B2gxJbt7a7dX2UKGgGR0BXgzOC5EtvaAdLVmgIR0B2j8N/e+EidX2UKGgGR0BXnG4uscQzaAdLTGgIR0B2mHAN5MURdX2UKGgGR0BXqEipvP1MaAdLSmgIR0B2oSj/MnqndX2UKGgGR0BXIe32EkB0aAdLaGgIR0B2rii0v4/NdX2UKGgGR0BXEyn5zo2XaAdLaGgIR0B2vwysS00FdX2UKGgGR0BXioDLbHp9aAdLV2gIR0B2x+8wpON6dX2UKGgGR0BXEKhg3LmqaAdLZmgIR0B22NGpda+wdX2UKGgGR0BXljWTX8O1aAdLSWgIR0B24XfwZwXJdX2UKGgGR0BXGsl1KXfJaAdLa2gIR0B27lkvsZ5zdX2UKGgGR0BW/1psXSBtaAdLaWgIR0B2/xfjS5RTdX2UKGgGR0BXCQggX/HYaAdLZGgIR0B3C/003wTedX2UKGgGR0BXD2oFV1fWaAdLY2gIR0B3GOk2xY7rdX2UKGgGR0BW+eIuXeFdaAdLXmgIR0B3Jb1Fpfx+dX2UKGgGR0BXiNd7fHghaAdLS2gIR0B3Lm2qkuYhdX2UKGgGR0BXUR5cC5mRaAdLcWgIR0B3P1jriVB2dX2UKGgGR0BXne49X9zfaAdLTGgIR0B3R//T9bX6dX2UKGgGR0BXG9NJvo/zaAdLYmgIR0B3VM9QoCuEdX2UKGgGR0BXqpsbedkKaAdLSGgIR0B3XXzshPj5dX2UKGgGR0BXdXHWBjFyaAdLW2gIR0B3akFgUlAvdX2UKGgGR0BXwSMxXXAeaAdLS2gIR0B3cukN4JNTdX2UKGgGR0BXnsPe54GEaAdLbWgIR0B3g8QvpQk5dX2UKGgGR0BXFGcOLBKuaAdLX2gIR0B3kI4//vORdX2UKGgGR0BXoPDDTBqLaAdLR2gIR0B3mStp22XtdX2UKGgGR0BXNao60Y0maAdLcmgIR0B3qhY8uBczdX2UKGgGR0BXnOEEkjX4aAdLTWgIR0B3ss2R7qptdX2UKGgGR0BW8nLmp2lmaAdLgGgIR0B3w+8CgbqAdX2UKGgGR0BXm0K/mDDkaAdLVmgIR0B30JzmwJPZdX2UKGgGR0BXRcVHnU2DaAdLa2gIR0B33YKmbb1zdX2UKGgGR0BXLKc/dIoWaAdLY2gIR0B36lOUMXrMdX2UKGgGR0BXoF41P3zuaAdLTGgIR0B38v8KohpydX2UKGgGR0BXeWKAJ9iMaAdLZmgIR0B4A8PZqVQidX2UKGgGR0BXqCMcZLqVaAdLTmgIR0B4DHTqjaf0dX2UKGgGR0BXHQZbY9PlaAdLYWgIR0B4GVLDhtLtdX2UKGgGR0BXXDv/io87aAdLaWgIR0B4JkUi6g/UdX2UKGgGR0BW+CwbEP1+aAdLaGgIR0B4NyH9FWn1dX2UKGgGR0BW1Q6dUbT+aAdLcWgIR0B4RC8mKIi1dX2UKGgGR0BXZ93KSxJNaAdLTmgIR0B4UNO45Lh8dX2UKGgGR0BW8dhRZU1iaAdLb2gIR0B4XepvP1L8dX2UKGgGR0BXb4KQaJhwaAdLbWgIR0B4bukzoEB9dX2UKGgGR0BW6uOCGvfTaAdLZGgIR0B4e904iosJdX2UKGgGR0BXsoeYD1XeaAdLTWgIR0B4hJ9x6v7ndX2UKGgGR0BW4S0WuX/paAdLfmgIR0B4lcWznieedX2UKGgGR0BW/HXRPXTWaAdLbmgIR0B4oryXlbNbdX2UKGgGR0BWyXeN1hb4aAdLcWgIR0B4s4/SpiqidX2UKGgGR0BXgxgNPP9laAdLcGgIR0B4wI7fYSQHdX2UKGgGR0BW4tNJvo/zaAdLb2gIR0B40X17IDHPdX2UKGgGR0BXJUDU3GXHaAdLZWgIR0B43mXPZ7HAdX2UKGgGR0BXaLRSgoPTaAdLWGgIR0B46zFqBVdYdX2UKGgGR0BXEqqCHymRaAdLaGgIR0B4+CBqbjLkdX2UKGgGR0BW2VtbcGkfaAdLcGgIR0B5CRFd9lVcdX2UKGgGR0BXIx9oexOdaAdLbWgIR0B5FgqYqoZRdX2UKGgGR0BXLhGMGX5WaAdLXWgIR0B5ItoBaLXMdX2UKGgGR0BXknavicXnaAdLUGgIR0B5K5UbT+efdX2UKGgGR0BWu87lq8DkaAdLmWgIR0B5QOYKIBRydX2UKGgGR0BXAHO8kD6naAdLdGgIR0B5Ud9Ujs2OdX2UKGgGR0BXG9ZRsMy8aAdLZmgIR0B5XsSlFc6edX2UKGgGR0BXJeLR8c+8aAdLW2gIR0B5a4pH7P6bdX2UKGgGR0BXmHAuZkTYaAdLRWgIR0B5dCZNO/L1dX2UKGgGR0BW2igf2bobaAdLgmgIR0B5hUP+XJHRdX2UKGgGR0BW1NKdxyXEaAdLlGgIR0B5ms7yQPqcdX2UKGgGR0BXm7qt5le4aAdLRmgIR0B5o3KNhmXgdX2UKGgGR0BXxRjawljWaAdLS2gIR0B5rB9y925hdX2UKGgGR0BXS41DSgGsaAdLfGgIR0B5vS5byH2zdX2UKGgGR0BXuLgflp49aAdLR2gIR0B5xc1FYuCgdX2UKGgGR0BW6MMZxaPkaAdLamgIR0B51qe4Cp3pdX2UKGgGR0BW0n2dupCKaAdLqWgIR0B57CvPkaMrdX2UKGgGR0BXAkvsZ5zHaAdLkGgIR0B5/XW07bL2dX2UKGgGR0BXHwUtZmqYaAdLkmgIR0B6EsFSsKb8dWUu"
|
86 |
+
},
|
87 |
+
"ep_success_buffer": {
|
88 |
+
":type:": "<class 'collections.deque'>",
|
89 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
90 |
+
},
|
91 |
+
"_n_updates": 50016,
|
92 |
+
"buffer_size": 1,
|
93 |
+
"batch_size": 512,
|
94 |
+
"learning_starts": 0,
|
95 |
+
"tau": 0.01,
|
96 |
+
"gamma": 0.9999,
|
97 |
+
"gradient_steps": 32,
|
98 |
+
"optimize_memory_usage": false,
|
99 |
+
"replay_buffer_class": {
|
100 |
+
":type:": "<class 'abc.ABCMeta'>",
|
101 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
102 |
+
"__module__": "stable_baselines3.common.buffers",
|
103 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
104 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fdc5fdea430>",
|
105 |
+
"add": "<function ReplayBuffer.add at 0x7fdc5fdea4c0>",
|
106 |
+
"sample": "<function ReplayBuffer.sample at 0x7fdc5fdea550>",
|
107 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fdc5fdea5e0>",
|
108 |
+
"__abstractmethods__": "frozenset()",
|
109 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fdc5fde1a80>"
|
110 |
+
},
|
111 |
+
"replay_buffer_kwargs": {},
|
112 |
+
"train_freq": {
|
113 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
114 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
115 |
+
},
|
116 |
+
"use_sde_at_warmup": false,
|
117 |
+
"target_entropy": -1.0,
|
118 |
+
"log_ent_coef": null,
|
119 |
+
"ent_coef": 0.1,
|
120 |
+
"target_update_interval": 1,
|
121 |
+
"ent_coef_optimizer": null,
|
122 |
+
"batch_norm_stats": [],
|
123 |
+
"batch_norm_stats_target": []
|
124 |
+
}
|
sac-MountainCarContinuous-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f5011fb3c040ec2f0a27f26c52cb1a85b95b451bccb786b41f78d07649d0a43
|
3 |
+
size 100168
|
sac-MountainCarContinuous-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39440af5158e3fb47ecc525e9d329ecbd7c856bf70fd565c749cc2c45263e188
|
3 |
+
size 747
|
sac-MountainCarContinuous-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a136288a20f682f4a1929f830f0a0210a138d613dca11f136b5525cfc286d43
|
3 |
+
size 12035
|