{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "reset_noise": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7b6575a980>" }, "verbose": 1, "policy_kwargs": { "log_std_init": -3.67, "net_arch": [ 64, 64 ], "use_sde": true }, "observation_space": { ":type:": "", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 2 ], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [ 1 ], "low": "[-1.]", "high": "[1.]", "bounded_below": "[ True]", "bounded_above": "[ True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 50016, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1672148782975591525, "learning_rate": { ":type:": "", ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "tensorboard_log": "runs/MountainCarContinuous-v0__sac__4098068495__1672148780/MountainCarContinuous-v0", "lr_schedule": { ":type:": "", ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAABt6db+kHyU8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg==" }, "_episode_num": 429, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.000320000000000098, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFeNgBcRlH2MAWyUS0uMAXSUR0B0wb2ZiNKidX2UKGgGR0BXFJQgs9SuaAdLWmgIR0B0zj3M6ij+dX2UKGgGR0BXJC4BmwqzaAdLVGgIR0B02qFK02LpdX2UKGgGR0BXNyGetjkNaAdLWWgIR0B04z3Dej20dX2UKGgGR0BXNShi9ZieaAdLUmgIR0B076dkJ8fFdX2UKGgGR0BW/tlmOEM9aAdLV2gIR0B0/AsK9f1IdX2UKGgGR0BWFKyKNyYHaAdLoWgIR0B1EOMR6F/QdX2UKGgGR0BXKinxaxHHaAdLXmgIR0B1HXAaef7KdX2UKGgGR0BXUU5+6RQraAdLU2gIR0B1JflQuVX4dX2UKGgGR0BX0Qnc+JP7aAdLUWgIR0B1MkuqWC2+dX2UKGgGR0BXFI0/GEPEaAdLVGgIR0B1OtP557gLdX2UKGgGR0BXKbdi2DxtaAdLV2gIR0B1R0mE4//vdX2UKGgGR0BXJIOMERraaAdLUGgIR0B1U6Op84PxdX2UKGgGR0BXIidat9x7aAdLVWgIR0B1XCxdIGyHdX2UKGgGR0BXeckt29teaAdLUWgIR0B1aH5eqrBCdX2UKGgGR0BXc9Yr8R+SaAdLSWgIR0B1cPH6uW8idX2UKGgGR0BXS1SjxkNGaAdLUmgIR0B1fU8vEjxDdX2UKGgGR0BXF/xMFlkIaAdLV2gIR0B1hdwiqyWzdX2UKGgGR0BW7xdt2s7uaAdLi2gIR0B1moKWszVMdX2UKGgGR0BXTGvfTCtSaAdLW2gIR0B1pv7gsK9gdX2UKGgGR0BXRgs052haaAdLU2gIR0B1r4LYwqRVdX2UKGgGR0BXWiQLeANHaAdLYGgIR0B1vBOwgTysdX2UKGgGR0BXI9z0Yj0MaAdLT2gIR0B1yHmCAc1gdX2UKGgGR0BXFFndweeWaAdLWGgIR0B10RqKxcFAdX2UKGgGR0BWIyQYDTz/aAdLlmgIR0B15dy7wrlOdX2UKGgGR0BXp+x8lXzUaAdLUGgIR0B18jSSeRPodX2UKGgGR0BXXkPtlZoxaAdLWWgIR0B1+tJSR8txdX2UKGgGR0BXNEhRqGlAaAdLUGgIR0B2By+h4+r3dX2UKGgGR0BXC/3WWhRJaAdLWWgIR0B2E5xsEaESdX2UKGgGR0BXU5ftx+8XaAdLSmgIR0B2HBwl0HQhdX2UKGgGR0BXdtdu5z5oaAdLUGgIR0B2JKQU5+6RdX2UKGgGR0BXb8b70nPWaAdLSGgIR0B2MOdAgPmQdX2UKGgGR0BXUoVuaWonaAdLTWgIR0B2OWVPepGXdX2UKGgGR0BW24H5aePJaAdLZ2gIR0B2RfMvAXVLdX2UKGgGR0BXlj/2kBS2aAdLS2gIR0B2UjxWkrPMdX2UKGgGR0BXMLfDUExJaAdLWGgIR0B2Wtga3qiXdX2UKGgGR0BXObKFIuoQaAdLUmgIR0B2Z0PwuuifdX2UKGgGR0BXM7VvuPV/aAdLT2gIR0B2b7pQk5ZKdX2UKGgGR0BXPH6hxo7FaAdLUmgIR0B2fBhmXgLrdX2UKGgGR0BXVxStNi6QaAdLV2gIR0B2iImY0EX+dX2UKGgGR0BXVT4+KTB7aAdLTGgIR0B2kPl6qsEJdX2UKGgGR0BXl5WvKU3XaAdLSWgIR0B2mWxW1c+rdX2UKGgGR0BXTYyKvV3EaAdLT2gIR0B2pacz67/XdX2UKGgGR0BXXEpuuRs/aAdLXWgIR0B2sXLTx5LRdX2UKGgGR0BXP4PoV2zOaAdLU2gIR0B2udzBAOawdX2UKGgGR0BXNSI55qubaAdLUWgIR0B2xjPkaMrFdX2UKGgGR0BXRp/oaDPGaAdLTWgIR0B2zq0a6z3RdX2UKGgGR0BXQb6ciGFjaAdLT2gIR0B22wL8aXKKdX2UKGgGR0BXT/8qFyq/aAdLTWgIR0B243hHbypadX2UKGgGR0BXHiV4X40uaAdLTWgIR0B277+qBErodX2UKGgGR0BXP2SdOIqLaAdLUGgIR0B2+DHxSYPYdX2UKGgGR0BXmEhaC+URaAdLU2gIR0B3BJ1xKg7HdX2UKGgGR0BXgA2606YFaAdLSWgIR0B3DQjkdV/+dX2UKGgGR0BXWl5v99+gaAdLS2gIR0B3FXqzJIUbdX2UKGgGR0BXhjDO1OTJaAdLWWgIR0B3IeXv6TGHdX2UKGgGR0BXEdtdiUgTaAdLT2gIR0B3LjcfvF3qdX2UKGgGR0BXkpO8CgbqaAdLWGgIR0B3Ns4KhL5AdX2UKGgGR0BXf5mmLtNSaAdLVmgIR0B3QyszVMEidX2UKGgGR0BXRUu+RHPNaAdLTmgIR0B3S6+7Dl5odX2UKGgGR0BXVQ7tAs06aAdLTGgIR0B3WAiGFi8WdX2UKGgGR0BXXf6sQumKaAdLUWgIR0B3YJFEy+HrdX2UKGgGR0BXVi9M9KVZaAdLUmgIR0B3bPl0YCQtdX2UKGgGR0BXJZMDfWMCaAdLVmgIR0B3eWN70Fr3dX2UKGgGR0BXbMjJMg2ZaAdLUGgIR0B3ge3solUqdX2UKGgGR0BW+C2c8TzvaAdLXmgIR0B3jmoR7JGOdX2UKGgGR0BXkJZjhDPXaAdLRmgIR0B3ltAC4jKQdX2UKGgGR0BXeoOc2BJ7aAdLTGgIR0B3oxi8WbgCdX2UKGgGR0BXtCtFKCg9aAdLVGgIR0B3q66RQrMDdX2UKGgGR0BXnLbpNbkfaAdLSWgIR0B3tBlz2exwdX2UKGgGR0BXTw2Ifr8jaAdLTmgIR0B3wGlVLi++dX2UKGgGR0BXM5qM3qA0aAdLUmgIR0B3yPJhfBvadX2UKGgGR0BXRS3CsOoYaAdLS2gIR0B31UbPyCnQdX2UKGgGR0BXq78ejmCAaAdLUWgIR0B33cWxhUiqdX2UKGgGR0BXSnxz7uUmaAdLTWgIR0B36gAksz2wdX2UKGgGR0BXOOJxeb/faAdLUWgIR0B38ndk8RthdX2UKGgGR0BXRypeeFtbaAdLS2gIR0B3/rboKUmldX2UKGgGR0BXWuQIUrTZaAdLSmgIR0B4Bxfsu3+ddX2UKGgGR0BXRnCKrJbMaAdLT2gIR0B4D4d1dPcjdX2UKGgGR0BXTnB+F10UaAdLTmgIR0B4G8eRxLkCdX2UKGgGR0BXW80P6KtQaAdLSmgIR0B4JDMFEAo5dX2UKGgGR0BXmNlAeJYUaAdLT2gIR0B4MIWJrLyMdX2UKGgGR0BXSRnJ1aGIaAdLS2gIR0B4OPUUfxMGdX2UKGgGR0BXX0OqebuuaAdLUWgIR0B4RTgCOmzjdX2UKGgGR0BXNuN5t3wDaAdLUWgIR0B4TbqIJqqPdX2UKGgGR0BXTVfmcOLBaAdLUGgIR0B4WgvugHu7dX2UKGgGR0BXXLCWNWELaAdLS2gIR0B4YnDMvAXVdX2UKGgGR0BXT9yksSTRaAdLTWgIR0B4atocrAgxdX2UKGgGR0BXPlwxWT5gaAdLTGgIR0B4dxqagElmdX2UKGgGR0BXPjXrdFfBaAdLVGgIR0B4f5flZHNHdX2UKGgGR0BVZycwxnFpaAdLxWgIR0B4mIrEtNBXdX2UKGgGR0BXaunhsImgaAdLSWgIR0B4pL5P/JeWdX2UKGgGR0BXQNDpkf9xaAdLV2gIR0B4rUmb9ZRsdX2UKGgGR0BXbDZHuqm1aAdLSWgIR0B4uX0g8r7PdX2UKGgGR0BXa1zEJjUeaAdLSGgIR0B4wdrrPdEcdX2UKGgGR0BXduFQEZBLaAdLVGgIR0B4zi2y9mHydX2UKGgGR0BXg6UaAFxGaAdLTWgIR0B41qPsAvL6dX2UKGgGR0BXNIBJZntfaAdLVWgIR0B44wN6PbPAdX2UKGgGR0BXGN+CsfaIaAdLWGgIR0B465NXYDkmdX2UKGgGR0BXYkqpcX3yaAdLSGgIR0B49936hxo7dX2UKGgGR0BXXxFRYRukaAdLTmgIR0B5AGHzpX6qdWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 50016, "buffer_size": 1, "batch_size": 512, "learning_starts": 0, "tau": 0.01, "gamma": 0.9999, "gradient_steps": 32, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7b657a2700>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "target_entropy": -1.0, "log_ent_coef": null, "ent_coef": 0.1, "target_update_interval": 1, "ent_coef_optimizer": null, "batch_norm_stats": [], "batch_norm_stats_target": [] }