Quentin Gallouédec commited on
Commit
7dc3f3f
1 Parent(s): 5dab956

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2d-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Walker2d-v3
16
+ type: Walker2d-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 4293.94 +/- 45.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TD3** Agent playing **Walker2d-v3**
25
+ This is a trained model of a **TD3** agent playing **Walker2d-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo td3 --env Walker2d-v3 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo td3 --env Walker2d-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo td3 --env Walker2d-v3 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo td3 --env Walker2d-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo td3 --env Walker2d-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo td3 --env Walker2d-v3 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('learning_starts', 10000),
66
+ ('n_timesteps', 1000000.0),
67
+ ('noise_std', 0.1),
68
+ ('noise_type', 'normal'),
69
+ ('policy', 'MlpPolicy'),
70
+ ('normalize', False)])
71
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Walker2d-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 542522677
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Walker2d-v3__td3__542522677__1676676142
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - learning_starts
3
+ - 10000
4
+ - - n_timesteps
5
+ - 1000000.0
6
+ - - noise_std
7
+ - 0.1
8
+ - - noise_type
9
+ - normal
10
+ - - policy
11
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2871cbabf575b8e4898c40bd2e327cf1510b0bef29e3578ad1ae10dffb6ec3b1
3
+ size 1257119
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 4293.9378676, "std_reward": 45.24701851960837, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T17:37:32.918336"}
td3-Walker2d-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13a490c5cb202acefc4fa152dba9ed42be1be6e5141e48789532c699f0db8d80
3
+ size 6282634
td3-Walker2d-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
td3-Walker2d-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eb9e08e1c85f91f3b4e219eb7cc9d9a9a5268b955dc59189e8c1cc9af422fa3
3
+ size 1039279
td3-Walker2d-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55272ab872fd8ff03065638d09765e69e62b271ff3c8cbd9c663f70e8814cfc6
3
+ size 2092601
td3-Walker2d-v3/data ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7f1ced9f0af0>",
8
+ "_build": "<function TD3Policy._build at 0x7f1ced9f0b80>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7f1ced9f0c10>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7f1ced9f0ca0>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7f1ced9f0d30>",
12
+ "forward": "<function TD3Policy.forward at 0x7f1ced9f0dc0>",
13
+ "_predict": "<function TD3Policy._predict at 0x7f1ced9f0e50>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7f1ced9f0ee0>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7f1ced9f6200>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "observation_space": {
21
+ ":type:": "<class 'gym.spaces.box.Box'>",
22
+ ":serialized:": "gAWVgQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWiAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSxGFlIwBQ5R0lFKUjARoaWdolGgSKJaIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLEYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsRhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
23
+ "dtype": "float64",
24
+ "_shape": [
25
+ 17
26
+ ],
27
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
28
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
29
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
30
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
31
+ "_np_random": null
32
+ },
33
+ "action_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVNgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 6
39
+ ],
40
+ "low": "[-1. -1. -1. -1. -1. -1.]",
41
+ "high": "[1. 1. 1. 1. 1. 1.]",
42
+ "bounded_below": "[ True True True True True True]",
43
+ "bounded_above": "[ True True True True True True]",
44
+ "_np_random": "RandomState(MT19937)"
45
+ },
46
+ "n_envs": 1,
47
+ "num_timesteps": 1000213,
48
+ "_total_timesteps": 1000000,
49
+ "_num_timesteps_at_start": 0,
50
+ "seed": 0,
51
+ "action_noise": {
52
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
53
+ ":serialized:": "gAWVOgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwaFlIwBQ5R0lFKUjAZfc2lnbWGUaAgoljAAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwaFlGgTdJRSlHViLg==",
54
+ "_mu": "[0. 0. 0. 0. 0. 0.]",
55
+ "_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]"
56
+ },
57
+ "start_time": 1676676145105982284,
58
+ "learning_rate": 0.001,
59
+ "tensorboard_log": "runs/Walker2d-v3__td3__542522677__1676676142/Walker2d-v3",
60
+ "lr_schedule": {
61
+ ":type:": "<class 'function'>",
62
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
63
+ },
64
+ "_last_obs": null,
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'numpy.ndarray'>",
71
+ ":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAOUwiz9ND/M/CRMKETVS0T93dlvtSRSaP8IRb6fliKW/JBZOaWndv7+aFI50kq32v8egdf5dQow/shhqwyht6r/pW3TVHhQLQNXh7IXGCt2/jssz+rH9AcBdvM68PGbHvzZhrcTmjB/AAAAAAAAAJMBPTzY+fDkCwEzXBRsiSry/axoM1NMzp7+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"
72
+ },
73
+ "_episode_num": 2886,
74
+ "use_sde": false,
75
+ "sde_sample_freq": -1,
76
+ "_current_progress_remaining": -0.00021300000000001873,
77
+ "ep_info_buffer": {
78
+ ":type:": "<class 'collections.deque'>",
79
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxw4qcb1JsECUhpRSlIwBbJRN6AOMAXSUR0Cze8bCN0eVdX2UKGgGaAloD0MI4GbxYhH+rUCUhpRSlGgVTegDaBZHQLOBJgDRtxd1fZQoaAZoCWgPQwgXuhKBcgewQJSGlFKUaBVN6ANoFkdAs4Z/3+MqBnV9lChoBmgJaA9DCHgOZag2c7BAlIaUUpRoFU3oA2gWR0CzjBPGACnxdX2UKGgGaAloD0MIgem0blM9r0CUhpRSlGgVTegDaBZHQLORsYWtU4t1fZQoaAZoCWgPQwidKt8zDlawQJSGlFKUaBVN6ANoFkdAs5dHst03fnV9lChoBmgJaA9DCNpVSPn5U7BAlIaUUpRoFU3oA2gWR0CznNwtSQ5ndX2UKGgGaAloD0MIxK9YwwUvr0CUhpRSlGgVTegDaBZHQLOiQQ3xWkt1fZQoaAZoCWgPQwgQkgVMsJSwQJSGlFKUaBVN6ANoFkdAs6ehw4sEq3V9lChoBmgJaA9DCM7CnnZgba9AlIaUUpRoFU3oA2gWR0CzrQN/vv0AdX2UKGgGaAloD0MIuVM6WJcHsUCUhpRSlGgVTegDaBZHQLOyY7EpAlh1fZQoaAZoCWgPQwjvcaYJp3CwQJSGlFKUaBVN6ANoFkdAs7ejY5DJEHV9lChoBmgJaA9DCD9xAP3mC7BAlIaUUpRoFU3oA2gWR0CzvKY6wMYudX2UKGgGaAloD0MIfGRz1aBwsECUhpRSlGgVTegDaBZHQLPCGWZ7Xxx1fZQoaAZoCWgPQwgFqKllCxOxQJSGlFKUaBVN6ANoFkdAs8eTqNZNf3V9lChoBmgJaA9DCKSoM/dEQLBAlIaUUpRoFU3oA2gWR0CzzQEGA09AdX2UKGgGaAloD0MIobyPo1k8sECUhpRSlGgVTegDaBZHQLPSdzvZyuJ1fZQoaAZoCWgPQwjn4JnQtGuvQJSGlFKUaBVN6ANoFkdAs9fvvKEFn3V9lChoBmgJaA9DCJRqn46HWbBAlIaUUpRoFU3oA2gWR0Cz3VuP3i71dX2UKGgGaAloD0MI3jr/dqm8sECUhpRSlGgVTegDaBZHQLPizpVjqfR1fZQoaAZoCWgPQwg6AyMvw8qwQJSGlFKUaBVN6ANoFkdAs+g6KCQLeHV9lChoBmgJaA9DCGFUUicA8K5AlIaUUpRoFU3oA2gWR0Cz8uenQ6ZIdX2UKGgGaAloD0MIOuY8Y0e5r0CUhpRSlGgVTegDaBZHQLP4QeQuEmJ1fZQoaAZoCWgPQwiTADW1DD6wQJSGlFKUaBVN6ANoFkdAs/106IWP93V9lChoBmgJaA9DCJxPHatQR7BAlIaUUpRoFU3oA2gWR0C0Am7teD3/dX2UKGgGaAloD0MIHcnlP1ymsECUhpRSlGgVTegDaBZHQLQH2By0a611fZQoaAZoCWgPQwiS5o9pNWuwQJSGlFKUaBVN6ANoFkdAtA1IW69TP3V9lChoBmgJaA9DCEpiSbkzC7BAlIaUUpRoFU3oA2gWR0C0ErQE+xGEdX2UKGgGaAloD0MIAoHOpAnUsECUhpRSlGgVTegDaBZHQLQYapBomHB1fZQoaAZoCWgPQwi6E+y/bmSwQJSGlFKUaBVN6ANoFkdAtB337UG3WnV9lChoBmgJaA9DCP65aMhIUq9AlIaUUpRoFU3oA2gWR0C0I2Ojua4MdX2UKGgGaAloD0MIMZV+wj1asUCUhpRSlGgVTegDaBZHQLQo0Py08eV1fZQoaAZoCWgPQwgbE2IuAbiwQJSGlFKUaBVN6ANoFkdAtC5sI8hcJXV9lChoBmgJaA9DCK2KcJPpBbBAlIaUUpRoFU3oA2gWR0C0M+pnUUfxdX2UKGgGaAloD0MI8zy4O7tnsECUhpRSlGgVTegDaBZHQLQ5aSLqD9R1fZQoaAZoCWgPQwgtBg/TAsqwQJSGlFKUaBVN6ANoFkdAtD7hjd56dHV9lChoBmgJaA9DCMFxGTcVga9AlIaUUpRoFU3oA2gWR0C0RCD0QK8ddX2UKGgGaAloD0MIMq1NY184sECUhpRSlGgVTegDaBZHQLRJZji4rjJ1fZQoaAZoCWgPQwhPB7KeKsGuQJSGlFKUaBVN6ANoFkdAtE8SzJIUanV9lChoBmgJaA9DCMHmHDwr9K5AlIaUUpRoFU3oA2gWR0C0VLd1dPcjdX2UKGgGaAloD0MIR+S7lPKQsECUhpRSlGgVTegDaBZHQLRaORigCfZ1fZQoaAZoCWgPQwgVWABT2lWwQJSGlFKUaBVN6ANoFkdAtF+4kHD77HV9lChoBmgJaA9DCH2wjA0NVq5AlIaUUpRoFU3oA2gWR0C0ZTEO3DvWdX2UKGgGaAloD0MIfGRz1dS5sECUhpRSlGgVTegDaBZHQLRqn7gsK9h1fZQoaAZoCWgPQwjys5Hr+uewQJSGlFKUaBVN6ANoFkdAtHAEllbu+nV9lChoBmgJaA9DCP8FggA9WLBAlIaUUpRoFU3oA2gWR0C0dXL5mAbydX2UKGgGaAloD0MIONibGCossECUhpRSlGgVTegDaBZHQLSATxoqTbF1fZQoaAZoCWgPQwg6z9iXrAavQJSGlFKUaBVN6ANoFkdAtIW8Q04zanV9lChoBmgJaA9DCPYpx2TBaLBAlIaUUpRoFU3oA2gWR0C0iyVb3XZodX2UKGgGaAloD0MIu/CD82XMsECUhpRSlGgVTegDaBZHQLSQmUrCm/F1fZQoaAZoCWgPQwiNXaJ6K+qtQJSGlFKUaBVN6ANoFkdAtJX8pWmxdXV9lChoBmgJaA9DCP4nf/debp9AlIaUUpRoFU0DAmgWR0C0mwq3Zwn6dX2UKGgGaAloD0MIP8QGC3+bsECUhpRSlGgVTegDaBZHQLSeLj59E1F1fZQoaAZoCWgPQwgCZr6D1yegQJSGlFKUaBVNGwJoFkdAtKNM2Ifr8nV9lChoBmgJaA9DCJ/Ik6Sz/6RAlIaUUpRoFU2LAmgWR0C0pnI5cTrWdX2UKGgGaAloD0MIPnWsUsppr0CUhpRSlGgVTegDaBZHQLSqSlDneSB1fZQoaAZoCWgPQwjOiNLeIFGvQJSGlFKUaBVN6ANoFkdAtK/qLjxTbXV9lChoBmgJaA9DCA5nfjV3bZJAlIaUUpRoFU1CAWgWR0C0tNZsj3VTdX2UKGgGaAloD0MIHsAiv+4onUCUhpRSlGgVTeMBaBZHQLS2ubwBo251fZQoaAZoCWgPQwi1iZP7PUmvQJSGlFKUaBVN6ANoFkdAtLm37UG3WnV9lChoBmgJaA9DCIuJzcfBcbBAlIaUUpRoFU3oA2gWR0C0vxozJp35dX2UKGgGaAloD0MIJR+7C6C/sECUhpRSlGgVTegDaBZHQLTEiP6sQup1fZQoaAZoCWgPQwjJchJKx2CwQJSGlFKUaBVN6ANoFkdAtMn0BXCCSXV9lChoBmgJaA9DCMMtH0mZe6RAlIaUUpRoFU2GAmgWR0C0zySyprDZdX2UKGgGaAloD0MICwkYXaomsECUhpRSlGgVTegDaBZHQLTSipo9LYh1fZQoaAZoCWgPQwj0iTxJrkCwQJSGlFKUaBVN6ANoFkdAtNgJ+CsfaHV9lChoBmgJaA9DCPw07s0n5q9AlIaUUpRoFU3oA2gWR0C03ZeTibUgdX2UKGgGaAloD0MI6KG2DauFrUCUhpRSlGgVTegDaBZHQLTjL4LkS291fZQoaAZoCWgPQwixbrw7yuawQJSGlFKUaBVN6ANoFkdAtOirwz+FUXV9lChoBmgJaA9DCIj029fRMq5AlIaUUpRoFU3oA2gWR0C07l9BF/hEdX2UKGgGaAloD0MImlshrMYVsECUhpRSlGgVTegDaBZHQLTz/ZmI0qJ1fZQoaAZoCWgPQwguVP61lEyvQJSGlFKUaBVN6ANoFkdAtPmuU2UB4nV9lChoBmgJaA9DCIhp39zn8a5AlIaUUpRoFU3oA2gWR0C0/xkxh2GJdX2UKGgGaAloD0MIswsG18hZsECUhpRSlGgVTegDaBZHQLUEOKlYU351fZQoaAZoCWgPQwjRH5p5vhCwQJSGlFKUaBVN6ANoFkdAtQ6NOuaF23V9lChoBmgJaA9DCMB5ceJDxa9AlIaUUpRoFU3oA2gWR0C1FAlPznRtdX2UKGgGaAloD0MIInAk0GTKsECUhpRSlGgVTegDaBZHQLUZZf9xZMd1fZQoaAZoCWgPQwhOJ9nqRmSwQJSGlFKUaBVN6ANoFkdAtR77J0W/J3V9lChoBmgJaA9DCGFrtvLudbBAlIaUUpRoFU3oA2gWR0C1JGpEMLF5dX2UKGgGaAloD0MISvHxCWG/sECUhpRSlGgVTegDaBZHQLUpzDOC5Et1fZQoaAZoCWgPQwhN9WT+CU+wQJSGlFKUaBVN6ANoFkdAtS9bgeii7HV9lChoBmgJaA9DCKcIcHpnErBAlIaUUpRoFU3oA2gWR0C1NOipWFN+dX2UKGgGaAloD0MIPUUOEWfor0CUhpRSlGgVTegDaBZHQLU6cnPmgap1fZQoaAZoCWgPQwiVZYhj8RuwQJSGlFKUaBVN6ANoFkdAtUAQg6ltTHV9lChoBmgJaA9DCMZvCivNOa9AlIaUUpRoFU3oA2gWR0C1RY0IHC40dX2UKGgGaAloD0MIpYXLKoRIr0CUhpRSlGgVTegDaBZHQLVLZncL0Bh1fZQoaAZoCWgPQwgYITzaKF+uQJSGlFKUaBVN6ANoFkdAtVEJrwe/6HV9lChoBmgJaA9DCOAvZkv+NrBAlIaUUpRoFU3oA2gWR0C1VnPwNLDidX2UKGgGaAloD0MIymyQSdKusECUhpRSlGgVTegDaBZHQLVcCFwkxAV1fZQoaAZoCWgPQwgwSzs1c7awQJSGlFKUaBVN6ANoFkdAtWERrhzeXXV9lChoBmgJaA9DCGO0jqpqZLBAlIaUUpRoFU3oA2gWR0C1ZpNwrDqGdX2UKGgGaAloD0MIxM4UOtfFsECUhpRSlGgVTegDaBZHQLVsGPVNHpd1fZQoaAZoCWgPQwjcSNkiATGwQJSGlFKUaBVN6ANoFkdAtXGMkQf6oHV9lChoBmgJaA9DCJ8AipFNBLFAlIaUUpRoFU3oA2gWR0C1dxCQxN7CdX2UKGgGaAloD0MI4jycwOxUsECUhpRSlGgVTegDaBZHQLV8icNYr8R1fZQoaAZoCWgPQwjGbp9VhrSwQJSGlFKUaBVN6ANoFkdAtYIAg5imVXV9lChoBmgJaA9DCG/zxkklCrBAlIaUUpRoFU3oA2gWR0C1h3p/CqIadX2UKGgGaAloD0MI8DZvnDzvr0CUhpRSlGgVTegDaBZHQLWM3FocrAh1fZQoaAZoCWgPQwhcVmEzAI2wQJSGlFKUaBVN6ANoFkdAtZJI8JUo8nV9lChoBmgJaA9DCIRFRZxqgLBAlIaUUpRoFU3oA2gWR0C1nQQswtaqdWUu"
80
+ },
81
+ "ep_success_buffer": {
82
+ ":type:": "<class 'collections.deque'>",
83
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
84
+ },
85
+ "_n_updates": 990215,
86
+ "buffer_size": 1,
87
+ "batch_size": 100,
88
+ "learning_starts": 10000,
89
+ "tau": 0.005,
90
+ "gamma": 0.99,
91
+ "gradient_steps": -1,
92
+ "optimize_memory_usage": false,
93
+ "replay_buffer_class": {
94
+ ":type:": "<class 'abc.ABCMeta'>",
95
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
96
+ "__module__": "stable_baselines3.common.buffers",
97
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
98
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f1ced9ed5e0>",
99
+ "add": "<function ReplayBuffer.add at 0x7f1ced9ed670>",
100
+ "sample": "<function ReplayBuffer.sample at 0x7f1ced9ed700>",
101
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f1ced9ed790>",
102
+ "__abstractmethods__": "frozenset()",
103
+ "_abc_impl": "<_abc._abc_data object at 0x7f1ced9e4fc0>"
104
+ },
105
+ "replay_buffer_kwargs": {},
106
+ "train_freq": {
107
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
108
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
109
+ },
110
+ "use_sde_at_warmup": false,
111
+ "policy_delay": 2,
112
+ "target_noise_clip": 0.5,
113
+ "target_policy_noise": 0.2,
114
+ "actor_batch_norm_stats": [],
115
+ "critic_batch_norm_stats": [],
116
+ "actor_batch_norm_stats_target": [],
117
+ "critic_batch_norm_stats_target": []
118
+ }
td3-Walker2d-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3c1df52fed3753576a66a3cdd406db1940453b29346bba4980bc792c9b5cca1
3
+ size 3129721
td3-Walker2d-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-Walker2d-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:279329808252a70c80ee9abb7c9ed64a59c8e7c63b0bf033db64abf7e376f613
3
+ size 91436