|
{ |
|
"policy_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=", |
|
"__module__": "sb3_contrib.tqc.policies", |
|
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", |
|
"__init__": "<function TQCPolicy.__init__ at 0x7fb7cfce6670>", |
|
"_build": "<function TQCPolicy._build at 0x7fb7cfce6700>", |
|
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fb7cfce6790>", |
|
"reset_noise": "<function TQCPolicy.reset_noise at 0x7fb7cfce6820>", |
|
"make_actor": "<function TQCPolicy.make_actor at 0x7fb7cfce68b0>", |
|
"make_critic": "<function TQCPolicy.make_critic at 0x7fb7cfce6940>", |
|
"forward": "<function TQCPolicy.forward at 0x7fb7cfce69d0>", |
|
"_predict": "<function TQCPolicy._predict at 0x7fb7cfce6a60>", |
|
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fb7cfce6af0>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7fb7cfce8380>" |
|
}, |
|
"verbose": 1, |
|
"policy_kwargs": { |
|
"use_sde": false |
|
}, |
|
"observation_space": { |
|
":type:": "<class 'gym.spaces.box.Box'>", |
|
":serialized:": "gAWVgQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWiAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSxGFlIwBQ5R0lFKUjARoaWdolGgSKJaIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLEYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsRhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", |
|
"dtype": "float64", |
|
"_shape": [ |
|
17 |
|
], |
|
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]", |
|
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", |
|
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]", |
|
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]", |
|
"_np_random": null |
|
}, |
|
"action_space": { |
|
":type:": "<class 'gym.spaces.box.Box'>", |
|
":serialized:": "gAWVNgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", |
|
"dtype": "float32", |
|
"_shape": [ |
|
6 |
|
], |
|
"low": "[-1. -1. -1. -1. -1. -1.]", |
|
"high": "[1. 1. 1. 1. 1. 1.]", |
|
"bounded_below": "[ True True True True True True]", |
|
"bounded_above": "[ True True True True True True]", |
|
"_np_random": "RandomState(MT19937)" |
|
}, |
|
"n_envs": 1, |
|
"num_timesteps": 1000000, |
|
"_total_timesteps": 1000000, |
|
"_num_timesteps_at_start": 0, |
|
"seed": 0, |
|
"action_noise": null, |
|
"start_time": 1675877964654143727, |
|
"learning_rate": 0.0003, |
|
"tensorboard_log": "runs/HalfCheetah-v3__tqc__1063768562__1675877960/HalfCheetah-v3", |
|
"lr_schedule": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" |
|
}, |
|
"_last_obs": null, |
|
"_last_episode_starts": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" |
|
}, |
|
"_last_original_obs": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAHOiy9g0BLm/KG5qFOpCfL+d4EauXpDwP6g5Ti41os4/5DSoUq7TvD/wzPOzC7yxv8A5zT0y8um/ya4S563RvL8eQPmSf/8qQDgtQp78/dw/rnl2KKaNAkCOThaePYYPwOAnX06iDhzAiLxWQDGVMMBWQDzQAawxQGqz+T/d1QpA03mVMUMvJ0CUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu" |
|
}, |
|
"_episode_num": 1000, |
|
"use_sde": false, |
|
"sde_sample_freq": -1, |
|
"_current_progress_remaining": 0.0, |
|
"ep_info_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIAn7dr4cxkCUhpRSlIwBbJRN6AOMAXSUR0DdgKuN5t3wdX2UKGgGaAloD0MI29yYntoUxkCUhpRSlGgVTegDaBZHQN2JHZPl+3J1fZQoaAZoCWgPQwh4JjRJbunFQJSGlFKUaBVN6ANoFkdA3ZFh2WY4Q3V9lChoBmgJaA9DCC0ly0lAksZAlIaUUpRoFU3oA2gWR0DdmUgVEd/8dX2UKGgGaAloD0MIy6Kwi96WxkCUhpRSlGgVTegDaBZHQN2hPIku6Et1fZQoaAZoCWgPQwib54h8qz7GQJSGlFKUaBVN6ANoFkdA3am6cL0BfnV9lChoBmgJaA9DCM9qgT3ACMZAlIaUUpRoFU3oA2gWR0Ddsi1VxS5zdX2UKGgGaAloD0MIxOkkW+nGxUCUhpRSlGgVTegDaBZHQN258wnDziF1fZQoaAZoCWgPQwiAuoECK4DGQJSGlFKUaBVN6ANoFkdA3cHc+xnnMnV9lChoBmgJaA9DCJdvfVi7LL5AlIaUUpRoFU3oA2gWR0DdygpQoCuEdX2UKGgGaAloD0MIhEcbR757xUCUhpRSlGgVTegDaBZHQN3Sj0/bCaZ1fZQoaAZoCWgPQwg1Qj9Tp4/AQJSGlFKUaBVN6ANoFkdA3dsR/ffoBHV9lChoBmgJaA9DCJw1eF+rJ8ZAlIaUUpRoFU3oA2gWR0Dd44cfyPMjdX2UKGgGaAloD0MIl65gGw85xUCUhpRSlGgVTegDaBZHQN3r6ID5j6N1fZQoaAZoCWgPQwgdr0D0HGjGQJSGlFKUaBVN6ANoFkdA3fQySqU/wHV9lChoBmgJaA9DCKTFGcOgpMZAlIaUUpRoFU3oA2gWR0Dd/KVHnU2DdX2UKGgGaAloD0MIGof6XdSSxkCUhpRSlGgVTegDaBZHQN4FHZ7TlT51fZQoaAZoCWgPQwjPpE3VEfTBQJSGlFKUaBVN6ANoFkdA3g2CJ+lTFXV9lChoBmgJaA9DCKrx0k181cVAlIaUUpRoFU3oA2gWR0DeFfkUmD15dX2UKGgGaAloD0MIR8Zq85fvxUCUhpRSlGgVTegDaBZHQN4eeH/HYHx1fZQoaAZoCWgPQwj/QLlth+27QJSGlFKUaBVN6ANoFkdA3ibnZWJaaHV9lChoBmgJaA9DCNibGJKvicZAlIaUUpRoFU3oA2gWR0DeL1VKVY6odX2UKGgGaAloD0MIrkhMUHlsxkCUhpRSlGgVTegDaBZHQN43x88cMmZ1fZQoaAZoCWgPQwhJKlPMuevGQJSGlFKUaBVN6ANoFkdA3kBBLcsUZnV9lChoBmgJaA9DCO60NSKAq8BAlIaUUpRoFU3oA2gWR0DeSMxyzXz2dX2UKGgGaAloD0MIumjIeJI1xkCUhpRSlGgVTegDaBZHQN5T9B6F/QV1fZQoaAZoCWgPQwhpHOp3YZuYQJSGlFKUaBVN6ANoFkdA3lvoRIBikXV9lChoBmgJaA9DCJbtQ94Sq8ZAlIaUUpRoFU3oA2gWR0DeY/tr9EThdX2UKGgGaAloD0MIBvLs8l/NxkCUhpRSlGgVTegDaBZHQN5rwRCdBjZ1fZQoaAZoCWgPQwggJXZtgfHFQJSGlFKUaBVN6ANoFkdA3nQ1uRLbpXV9lChoBmgJaA9DCPJ376iFV8ZAlIaUUpRoFU3oA2gWR0DefLfpgTh6dX2UKGgGaAloD0MI7QxTW8yDxkCUhpRSlGgVTegDaBZHQN6FNfk3juN1fZQoaAZoCWgPQwibjgBu1GzFQJSGlFKUaBVN6ANoFkdA3ozFPxhDxHV9lChoBmgJaA9DCAxWnGpdQ8dAlIaUUpRoFU3oA2gWR0DelSfTEzfrdX2UKGgGaAloD0MIA5gycPAnm0CUhpRSlGgVTegDaBZHQN6dp84tHx11fZQoaAZoCWgPQwgFhqxu33bGQJSGlFKUaBVN6ANoFkdA3qYowwTM7nV9lChoBmgJaA9DCHlafuAUcMZAlIaUUpRoFU3oA2gWR0Derqr5ylvZdX2UKGgGaAloD0MILPTBMq5SxkCUhpRSlGgVTegDaBZHQN63H4/mknF1fZQoaAZoCWgPQwjkoe9u38HGQJSGlFKUaBVN6ANoFkdA3r9gU1yeZ3V9lChoBmgJaA9DCGTo2EFLOMZAlIaUUpRoFU3oA2gWR0Dex9JusLfDdX2UKGgGaAloD0MIhJohVVDJxUCUhpRSlGgVTegDaBZHQN7QUxVyWAx1fZQoaAZoCWgPQwhtOZfiomPGQJSGlFKUaBVN6ANoFkdA3tjAL5h0AHV9lChoBmgJaA9DCFBQilZ8XMZAlIaUUpRoFU3oA2gWR0De4TnisGPgdX2UKGgGaAloD0MIKa+V0G2SxkCUhpRSlGgVTegDaBZHQN7po5m7J4l1fZQoaAZoCWgPQwjdC8wKkQTGQJSGlFKUaBVN6ANoFkdA3vIDL6k693V9lChoBmgJaA9DCGrdBrXjN8ZAlIaUUpRoFU3oA2gWR0De+fOuJUHZdX2UKGgGaAloD0MILJrOTroCxkCUhpRSlGgVTegDaBZHQN8CIRcJMQF1fZQoaAZoCWgPQwigiEUM58u3QJSGlFKUaBVN6ANoFkdA3wqf0r9VFXV9lChoBmgJaA9DCA2l9iLCYqpAlIaUUpRoFU3oA2gWR0DfEyEekpI+dX2UKGgGaAloD0MIFvw2xPaJwUCUhpRSlGgVTegDaBZHQN8bhOPJaJR1fZQoaAZoCWgPQwi8Wu7MbFLGQJSGlFKUaBVN6ANoFkdA3yfhfapPynV9lChoBmgJaA9DCPFFe7yIVLJAlIaUUpRoFU3oA2gWR0DfLymfg75mdX2UKGgGaAloD0MIBrzMsAPJxkCUhpRSlGgVTegDaBZHQN83GAaNuLt1fZQoaAZoCWgPQwirP8Iw8Fa5QJSGlFKUaBVN6ANoFkdA3z9B0VafSXV9lChoBmgJaA9DCMbCEDnJ7sRAlIaUUpRoFU3oA2gWR0DfR7j9/BnBdX2UKGgGaAloD0MI0ZFc/lO4xkCUhpRSlGgVTegDaBZHQN9QQYJeE7J1fZQoaAZoCWgPQwgmrI2xQ8/FQJSGlFKUaBVN6ANoFkdA31ikm65G0HV9lChoBmgJaA9DCNpYiXnCCsdAlIaUUpRoFU3oA2gWR0DfYH0F1SwXdX2UKGgGaAloD0MIgxYSMNYvs0CUhpRSlGgVTegDaBZHQN9ondNet0V1fZQoaAZoCWgPQwiZS6q2TTvGQJSGlFKUaBVN6ANoFkdA33EdRD1GsnV9lChoBmgJaA9DCEWduYd24sVAlIaUUpRoFU3oA2gWR0DfeaAMRYigdX2UKGgGaAloD0MI0nKgh9wIx0CUhpRSlGgVTegDaBZHQN+CHETL4et1fZQoaAZoCWgPQwgbf6KymZitQJSGlFKUaBVN6ANoFkdA34qMkpZwGXV9lChoBmgJaA9DCA3iAzvGB8BAlIaUUpRoFU3oA2gWR0DfkmbnU2DQdX2UKGgGaAloD0MIEHUfgBxUxkCUhpRSlGgVTegDaBZHQN+anPacqe91fZQoaAZoCWgPQwjPa+wSvaSrQJSGlFKUaBVN6ANoFkdA36MOVhTfi3V9lChoBmgJaA9DCHKjyFprmMZAlIaUUpRoFU3oA2gWR0Dfq3/VTaTPdX2UKGgGaAloD0MIp0HRPLyJxkCUhpRSlGgVTegDaBZHQN+0BWi5/b11fZQoaAZoCWgPQwgyIHu9u3HGQJSGlFKUaBVN6ANoFkdA37x8vYODrnV9lChoBmgJaA9DCEEN38JK8sVAlIaUUpRoFU3oA2gWR0DfxLYIVuaXdX2UKGgGaAloD0MImWTkLHL4xkCUhpRSlGgVTegDaBZHQN/NLQ7tAs11fZQoaAZoCWgPQwjG3osvKr3GQJSGlFKUaBVN6ANoFkdA39W0i3XqaHV9lChoBmgJaA9DCMISDyhdGcdAlIaUUpRoFU3oA2gWR0Df3jSFoL5RdX2UKGgGaAloD0MI4PdvXoxYxkCUhpRSlGgVTegDaBZHQN/muR+BpYd1fZQoaAZoCWgPQwi1+X/V//bGQJSGlFKUaBVN6ANoFkdA3+8uljEvTXV9lChoBmgJaA9DCO9YbJPmz8ZAlIaUUpRoFU3oA2gWR0Df/DhmJ3xGdX2UKGgGaAloD0MIRpkNMpnGqkCUhpRSlGgVTegDaBZHQOABvABq9Gt1fZQoaAZoCWgPQwgBw/LnIXbGQJSGlFKUaBVN6ANoFkdA4AUJJ9AoonV9lChoBmgJaA9DCKuuQzVfMcdAlIaUUpRoFU3oA2gWR0DgCJ7mCiAUdX2UKGgGaAloD0MIiWAcXGTdxkCUhpRSlGgVTegDaBZHQOAMxZu4wyt1fZQoaAZoCWgPQwgOLbKdt7+/QJSGlFKUaBVN6ANoFkdA4BECCpNsWXV9lChoBmgJaA9DCKoNTkT/8cZAlIaUUpRoFU3oA2gWR0DgFPjTtLL7dX2UKGgGaAloD0MIYviImNp1xkCUhpRSlGgVTegDaBZHQOAY02ii7Cl1fZQoaAZoCWgPQwj+8smKPTDGQJSGlFKUaBVN6ANoFkdA4BzsGi5/b3V9lChoBmgJaA9DCEFK7NpOga1AlIaUUpRoFU3oA2gWR0DgISZCb+cZdX2UKGgGaAloD0MIVOQQcesywUCUhpRSlGgVTegDaBZHQOAlZFkDp1R1fZQoaAZoCWgPQwgQlrGhNcvGQJSGlFKUaBVN6ANoFkdA4Cmfza9K3HV9lChoBmgJaA9DCOKReHmGjMZAlIaUUpRoFU3oA2gWR0DgLdWVclgMdX2UKGgGaAloD0MIHcwmwO6UxkCUhpRSlGgVTegDaBZHQOAx+dBKL891fZQoaAZoCWgPQwggDafM3Q6+QJSGlFKUaBVN6ANoFkdA4DY6bdi2D3V9lChoBmgJaA9DCBQhdTs9zcZAlIaUUpRoFU3oA2gWR0DgOneWLP2PdX2UKGgGaAloD0MIuRluwHO3xkCUhpRSlGgVTegDaBZHQOA+u7s8gZF1fZQoaAZoCWgPQwhPWU3X0fPGQJSGlFKUaBVN6ANoFkdA4EL+6wMYuXV9lChoBmgJaA9DCJ7sZkYDq8ZAlIaUUpRoFU3oA2gWR0DgRxwQSSNgdX2UKGgGaAloD0MIF7zoK6IiwkCUhpRSlGgVTegDaBZHQOBKoBjpcHJ1fZQoaAZoCWgPQwi9/E6Tv5LGQJSGlFKUaBVN6ANoFkdA4E7Yi35N5HV9lChoBmgJaA9DCOW1Erpvw8ZAlIaUUpRoFU3oA2gWR0DgUxGFlkH2dX2UKGgGaAloD0MIb4EExcnZxkCUhpRSlGgVTegDaBZHQOBXTVoFmnR1fZQoaAZoCWgPQwgXRnpRxxbGQJSGlFKUaBVN6ANoFkdA4FuNA2qDLHV9lChoBmgJaA9DCNj1C3bNU8ZAlIaUUpRoFU3oA2gWR0DgX8gSMcZMdWUu" |
|
}, |
|
"ep_success_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" |
|
}, |
|
"_n_updates": 990000, |
|
"buffer_size": 1, |
|
"batch_size": 256, |
|
"learning_starts": 10000, |
|
"tau": 0.005, |
|
"gamma": 0.99, |
|
"gradient_steps": 1, |
|
"optimize_memory_usage": false, |
|
"replay_buffer_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", |
|
"__module__": "stable_baselines3.common.buffers", |
|
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", |
|
"__init__": "<function ReplayBuffer.__init__ at 0x7fb7d016e5e0>", |
|
"add": "<function ReplayBuffer.add at 0x7fb7d016e670>", |
|
"sample": "<function ReplayBuffer.sample at 0x7fb7d016e700>", |
|
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fb7d016e790>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7fb7d0166940>" |
|
}, |
|
"replay_buffer_kwargs": {}, |
|
"train_freq": { |
|
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", |
|
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" |
|
}, |
|
"use_sde_at_warmup": false, |
|
"target_entropy": -6.0, |
|
"ent_coef": "auto", |
|
"target_update_interval": 1, |
|
"top_quantiles_to_drop_per_net": 2, |
|
"batch_norm_stats": [], |
|
"batch_norm_stats_target": [] |
|
} |