Quentin Gallouédec
Initial commit
b234f57
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
"__module__": "sb3_contrib.tqc.policies",
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function TQCPolicy.__init__ at 0x7f8fa70e6670>",
"_build": "<function TQCPolicy._build at 0x7f8fa70e6700>",
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f8fa70e6790>",
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f8fa70e6820>",
"make_actor": "<function TQCPolicy.make_actor at 0x7f8fa70e68b0>",
"make_critic": "<function TQCPolicy.make_critic at 0x7f8fa70e6940>",
"forward": "<function TQCPolicy.forward at 0x7f8fa70e69d0>",
"_predict": "<function TQCPolicy._predict at 0x7f8fa70e6a60>",
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f8fa70e6af0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f8fa70e4f80>"
},
"verbose": 1,
"policy_kwargs": {
"use_sde": false
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVgQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWiAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSxGFlIwBQ5R0lFKUjARoaWdolGgSKJaIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLEYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsRhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
17
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVNgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"dtype": "float32",
"_shape": [
6
],
"low": "[-1. -1. -1. -1. -1. -1.]",
"high": "[1. 1. 1. 1. 1. 1.]",
"bounded_below": "[ True True True True True True]",
"bounded_above": "[ True True True True True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1000000,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1676133276474979485,
"learning_rate": 0.0003,
"tensorboard_log": "runs/HalfCheetah-v3__tqc__261127697__1676133272/HalfCheetah-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAMu4uB97WbM/TlH1M9RgzT/NZRkvvmnEP4H5jlIVI9+/gRxwsrPc1j9QN+FzAsDnv8y8/UrVmOa/AqNCQzhlzL8oc+Vw7eMjQLmwZegNuNG/7NKpM30hBkA89tWCPtUpwI4vFh9NfPg/1aGYKOkYF8Au1rBiCB3mv5y5NJw3dP0/cAJvQqfCG8CUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"
},
"_episode_num": 1000,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFLLzNmzxxUCUhpRSlIwBbJRN6AOMAXSUR0DX/bDNTtLMdX2UKGgGaAloD0MIoUrNHhjwxUCUhpRSlGgVTegDaBZHQNgEFIJVsDZ1fZQoaAZoCWgPQwgNOEvJMCPGQJSGlFKUaBVN6ANoFkdA2ApcJ1JUYXV9lChoBmgJaA9DCPzfERUCRsZAlIaUUpRoFU3oA2gWR0DYEK/7aZhKdX2UKGgGaAloD0MIelImNXCmxUCUhpRSlGgVTegDaBZHQNgXKoZVGTd1fZQoaAZoCWgPQwg5tp4hlFXGQJSGlFKUaBVN6ANoFkdA2B03lEqlQHV9lChoBmgJaA9DCL72zJJo38VAlIaUUpRoFU3oA2gWR0DYIghDCxeLdX2UKGgGaAloD0MIHR1XI/G6xUCUhpRSlGgVTegDaBZHQNgn+pcHGCJ1fZQoaAZoCWgPQwjbTlsjfg/GQJSGlFKUaBVN6ANoFkdA2C47e2uxKXV9lChoBmgJaA9DCPwaSYLS18VAlIaUUpRoFU3oA2gWR0DYNJ9rylN2dX2UKGgGaAloD0MILeqT3HdyxkCUhpRSlGgVTegDaBZHQNg675EQXhx1fZQoaAZoCWgPQwitM74vtszGQJSGlFKUaBVN6ANoFkdA2EE6zmfXgHV9lChoBmgJaA9DCDqt26B+L8ZAlIaUUpRoFU3oA2gWR0DYR6lCgK4QdX2UKGgGaAloD0MIPPn02Bo2xkCUhpRSlGgVTegDaBZHQNhN9kTlDF91fZQoaAZoCWgPQwjfbkkO0O7FQJSGlFKUaBVN6ANoFkdA2FRM7qY7aXV9lChoBmgJaA9DCGYwRiTct8ZAlIaUUpRoFU3oA2gWR0DYWrHL5h0AdX2UKGgGaAloD0MIajF4mNR8xkCUhpRSlGgVTegDaBZHQNhhENlqagF1fZQoaAZoCWgPQwicMcwJBlXGQJSGlFKUaBVN6ANoFkdA2GdzJSBK+XV9lChoBmgJaA9DCL39uWi0t8VAlIaUUpRoFU3oA2gWR0DYbbY22oegdX2UKGgGaAloD0MIN6eSAUwLxkCUhpRSlGgVTegDaBZHQNhzjE+xGDt1fZQoaAZoCWgPQwjr5AzFCR7GQJSGlFKUaBVN6ANoFkdA2HjZG7z06HV9lChoBmgJaA9DCHS2gNCsVcZAlIaUUpRoFU3oA2gWR0DYfaxR3u/ldX2UKGgGaAloD0MIsBu2LQpjxkCUhpRSlGgVTegDaBZHQNiCrWixmkF1fZQoaAZoCWgPQwi2ErpLVK3GQJSGlFKUaBVN6ANoFkdA2IgS1O0sv3V9lChoBmgJaA9DCEuxo3FI6MVAlIaUUpRoFU3oA2gWR0DYjPAurZJ1dX2UKGgGaAloD0MIO4veqXCxxkCUhpRSlGgVTegDaBZHQNiUscm8dxR1fZQoaAZoCWgPQwhQwkzbQQ3GQJSGlFKUaBVN6ANoFkdA2Jsr5cTrV3V9lChoBmgJaA9DCOBJC5fpm8ZAlIaUUpRoFU3oA2gWR0DYoYzdWQwLdX2UKGgGaAloD0MIwQKYMjJfxkCUhpRSlGgVTegDaBZHQNin/nGbTc91fZQoaAZoCWgPQwiWlpF6QVHGQJSGlFKUaBVN6ANoFkdA2K5pspoboHV9lChoBmgJaA9DCEsi+yAXQcZAlIaUUpRoFU3oA2gWR0DYtK3HsC1adX2UKGgGaAloD0MI66nVV+d2xkCUhpRSlGgVTegDaBZHQNi69uiaiK11fZQoaAZoCWgPQwgkDAOWHirGQJSGlFKUaBVN6ANoFkdA2MBHzk6tDHV9lChoBmgJaA9DCNDWwcEAycVAlIaUUpRoFU3oA2gWR0DYxgzMA3kxdX2UKGgGaAloD0MIxQQ1fKHsxUCUhpRSlGgVTegDaBZHQNjMaDbBXS11fZQoaAZoCWgPQwgN/KiGRbbFQJSGlFKUaBVN6ANoFkdA2NLFIPK+z3V9lChoBmgJaA9DCBakGYvOhMZAlIaUUpRoFU3oA2gWR0DY2Srqt5lfdX2UKGgGaAloD0MIE9OFWLcNxkCUhpRSlGgVTegDaBZHQNjfr5Jf6XV1fZQoaAZoCWgPQwj2JLA57T7GQJSGlFKUaBVN6ANoFkdA2OYYAxBVuXV9lChoBmgJaA9DCIEiFjFwQ8ZAlIaUUpRoFU3oA2gWR0DY7IAMKCxvdX2UKGgGaAloD0MIyF2EKTJfxkCUhpRSlGgVTegDaBZHQNjyLls+FDh1fZQoaAZoCWgPQwgHtHQF34zGQJSGlFKUaBVN6ANoFkdA2PhA4cm0FHV9lChoBmgJaA9DCO6zykyHXMZAlIaUUpRoFU3oA2gWR0DY/kJKHwgDdX2UKGgGaAloD0MIFk890u6exkCUhpRSlGgVTegDaBZHQNkEQHxe9jB1fZQoaAZoCWgPQwhJgQUw127GQJSGlFKUaBVN6ANoFkdA2Qq/WfK6nXV9lChoBmgJaA9DCCWzeoffXsZAlIaUUpRoFU3oA2gWR0DZEV2Rhc7hdX2UKGgGaAloD0MI46jcRHeDxkCUhpRSlGgVTegDaBZHQNkXzl89fTl1fZQoaAZoCWgPQwjKcDyfM5/GQJSGlFKUaBVN6ANoFkdA2R4vECvHLnV9lChoBmgJaA9DCFkZjXwahsZAlIaUUpRoFU3oA2gWR0DZJHArtmcwdX2UKGgGaAloD0MIluoCXj7CxUCUhpRSlGgVTegDaBZHQNkq08I/qxF1fZQoaAZoCWgPQwhgOq3bmEfGQJSGlFKUaBVN6ANoFkdA2TSa4Oc2BXV9lChoBmgJaA9DCFLuPsepRcZAlIaUUpRoFU3oA2gWR0DZOvSr6tT2dX2UKGgGaAloD0MIJjRJLJFXxkCUhpRSlGgVTegDaBZHQNlBVdTDO1R1fZQoaAZoCWgPQwiUFFgA0Z/GQJSGlFKUaBVN6ANoFkdA2Ue8uUUwjHV9lChoBmgJaA9DCJVh3A2KV8ZAlIaUUpRoFU3oA2gWR0DZThGqQzUJdX2UKGgGaAloD0MIxoUDIac+xkCUhpRSlGgVTegDaBZHQNlUaXzQNTd1fZQoaAZoCWgPQwhuMT83ssvGQJSGlFKUaBVN6ANoFkdA2Vq3NEw353V9lChoBmgJaA9DCK71RULZyMVAlIaUUpRoFU3oA2gWR0DZYSnmcOLBdX2UKGgGaAloD0MIU3dlF3B9xkCUhpRSlGgVTegDaBZHQNlmaF2mpER1fZQoaAZoCWgPQwhbttYX94vFQJSGlFKUaBVN6ANoFkdA2WwyRr8BMnV9lChoBmgJaA9DCLrYtFLYUsZAlIaUUpRoFU3oA2gWR0DZcg13Ux20dX2UKGgGaAloD0MIvXK9bc65xkCUhpRSlGgVTegDaBZHQNl4MJ/wy7B1fZQoaAZoCWgPQwjEl4kiTvfFQJSGlFKUaBVN6ANoFkdA2X6VosI3SHV9lChoBmgJaA9DCCkGSDRR3MZAlIaUUpRoFU3oA2gWR0DZhNpuaWondX2UKGgGaAloD0MIIA2nzCOyxkCUhpRSlGgVTegDaBZHQNmLQX5FgD11fZQoaAZoCWgPQwhsW5TZIHXGQJSGlFKUaBVN6ANoFkdA2ZE0FCswL3V9lChoBmgJaA9DCKThlLnxxsZAlIaUUpRoFU3oA2gWR0DZlzQL6UJOdX2UKGgGaAloD0MIuLBuvBOcxkCUhpRSlGgVTegDaBZHQNmdh/+Kjzt1fZQoaAZoCWgPQwh/3795WSnGQJSGlFKUaBVN6ANoFkdA2aQPcB2fTXV9lChoBmgJaA9DCFiut83AjcZAlIaUUpRoFU3oA2gWR0DZqnQkZ75VdX2UKGgGaAloD0MIaXHGMP2CxkCUhpRSlGgVTegDaBZHQNmw2xjJ+2F1fZQoaAZoCWgPQwjayHVTAqLGQJSGlFKUaBVN6ANoFkdA2bczW/rSmnV9lChoBmgJaA9DCD4jERrd/8VAlIaUUpRoFU3oA2gWR0DZvY3A6+36dX2UKGgGaAloD0MIo1pEFFMHxkCUhpRSlGgVTegDaBZHQNnD4tRJmNB1fZQoaAZoCWgPQwia0CSxFkrGQJSGlFKUaBVN6ANoFkdA2co0DLKV6nV9lChoBmgJaA9DCPDce7igf75AlIaUUpRoFU3oA2gWR0DZ0/cD1XeWdX2UKGgGaAloD0MIIuAQqmgrxkCUhpRSlGgVTegDaBZHQNnaTtPDYRN1fZQoaAZoCWgPQwjYEYdscjzGQJSGlFKUaBVN6ANoFkdA2eC8RdhRZXV9lChoBmgJaA9DCJlGk4vHXMdAlIaUUpRoFU3oA2gWR0DZ5qYoYvWZdX2UKGgGaAloD0MIf4l464Y2xkCUhpRSlGgVTegDaBZHQNnsupJPIn11fZQoaAZoCWgPQwiLMhtkeAzGQJSGlFKUaBVN6ANoFkdA2fMg7tReknV9lChoBmgJaA9DCCJwJNBMpsZAlIaUUpRoFU3oA2gWR0DZ+XemHgxbdX2UKGgGaAloD0MIGeQuwtQYxkCUhpRSlGgVTegDaBZHQNn/wpN47ih1fZQoaAZoCWgPQwj8VBUaZujFQJSGlFKUaBVN6ANoFkdA2gYxa/yoXXV9lChoBmgJaA9DCD7t8NceTMZAlIaUUpRoFU3oA2gWR0DaC40h/y5JdX2UKGgGaAloD0MIdR2qKQFDxkCUhpRSlGgVTegDaBZHQNoRiWTot+V1fZQoaAZoCWgPQwii725lQZfGQJSGlFKUaBVN6ANoFkdA2hfSwQUYbnV9lChoBmgJaA9DCJDbL59GncZAlIaUUpRoFU3oA2gWR0DaHiVqKxcFdX2UKGgGaAloD0MI492RsUBWxkCUhpRSlGgVTegDaBZHQNokhCD28I11fZQoaAZoCWgPQwjII7iR+vDGQJSGlFKUaBVN6ANoFkdA2irRvxpco3V9lChoBmgJaA9DCAgAjj2nA8ZAlIaUUpRoFU3oA2gWR0DaMK9xDLKWdX2UKGgGaAloD0MIR3cQO2WJxkCUhpRSlGgVTegDaBZHQNo2Thx1gYx1fZQoaAZoCWgPQwigUbr0P+bGQJSGlFKUaBVN6ANoFkdA2jypcxTKknV9lChoBmgJaA9DCJaxoZs578VAlIaUUpRoFU3oA2gWR0DaQwEovzvrdX2UKGgGaAloD0MIfQc/ccYMxkCUhpRSlGgVTegDaBZHQNpJXZobn5l1fZQoaAZoCWgPQwidZ+xLKAPGQJSGlFKUaBVN6ANoFkdA2k+zn1WbPXV9lChoBmgJaA9DCN0ostYAa8ZAlIaUUpRoFU3oA2gWR0DaVeO/oJRgdX2UKGgGaAloD0MIXfjB+RCBxkCUhpRSlGgVTegDaBZHQNpbwD3mFJx1fZQoaAZoCWgPQwgoDwu1Ll3GQJSGlFKUaBVN6ANoFkdA2mI7woLG73V9lChoBmgJaA9DCH/C2a3licZAlIaUUpRoFU3oA2gWR0DaaLCLfk3kdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 990000,
"buffer_size": 1,
"batch_size": 256,
"learning_starts": 10000,
"tau": 0.005,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7f8fa756e5e0>",
"add": "<function ReplayBuffer.add at 0x7f8fa756e670>",
"sample": "<function ReplayBuffer.sample at 0x7f8fa756e700>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f8fa756e790>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f8fa7568380>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"target_entropy": -6.0,
"ent_coef": "auto",
"target_update_interval": 1,
"top_quantiles_to_drop_per_net": 2,
"batch_norm_stats": [],
"batch_norm_stats_target": []
}