File size: 18,813 Bytes
2b028a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
        "__module__": "sb3_contrib.tqc.policies",
        "__doc__": "\n    Policy class (with both actor and critic) for TQC.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the feature extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    :param n_quantiles: Number of quantiles for the critic.\n    :param n_critics: Number of critic networks to create.\n    :param share_features_extractor: Whether to share or not the features extractor\n        between the actor and the critic (this saves computation time)\n    ",
        "__init__": "<function TQCPolicy.__init__ at 0x7fba792ea670>",
        "_build": "<function TQCPolicy._build at 0x7fba792ea700>",
        "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fba792ea790>",
        "reset_noise": "<function TQCPolicy.reset_noise at 0x7fba792ea820>",
        "make_actor": "<function TQCPolicy.make_actor at 0x7fba792ea8b0>",
        "make_critic": "<function TQCPolicy.make_critic at 0x7fba792ea940>",
        "forward": "<function TQCPolicy.forward at 0x7fba792ea9d0>",
        "_predict": "<function TQCPolicy._predict at 0x7fba792eaa60>",
        "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fba792eaaf0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fba792e8d80>"
    },
    "verbose": 1,
    "policy_kwargs": {
        "use_sde": false
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float64",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
        "dtype": "float32",
        "_shape": [
            2
        ],
        "low": "[-1. -1.]",
        "high": "[1. 1.]",
        "bounded_below": "[ True  True]",
        "bounded_above": "[ True  True]",
        "_np_random": "RandomState(MT19937)"
    },
    "n_envs": 1,
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": 0,
    "action_noise": null,
    "start_time": 1676640900887674250,
    "learning_rate": 0.0003,
    "tensorboard_log": "runs/Swimmer-v3__tqc__255601696__1676640897/Swimmer-v3",
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": null,
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAALknIndqGt4/t65JuBP4579iGnShQBLXv9w0sk4GZtk/QlIRwSSs1z84BSB0iwnOP6YNad8oqfs/T/Xyh8Z7FMCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLCIaUjAFDlHSUUpQu"
    },
    "_episode_num": 1000,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9tTqq2tqdUCUhpRSlIwBbJRN6AOMAXSUR0DEExVv2oNvdX2UKGgGaAloD0MI2O+JdSpndUCUhpRSlGgVTegDaBZHQMQY2z/Q0Gh1fZQoaAZoCWgPQwj7Bbth22B1QJSGlFKUaBVN6ANoFkdAxB6C3Ov+wXV9lChoBmgJaA9DCJ+RCI3gRHVAlIaUUpRoFU3oA2gWR0DEJCqfnOjZdX2UKGgGaAloD0MIJ02DojkIdUCUhpRSlGgVTegDaBZHQMQp7r/sE7p1fZQoaAZoCWgPQwgn9zsUxd10QJSGlFKUaBVN6ANoFkdAxC+h7WNFSnV9lChoBmgJaA9DCFQ7w9TWu3RAlIaUUpRoFU3oA2gWR0DENV02WIGhdX2UKGgGaAloD0MIlghU/yCtdECUhpRSlGgVTegDaBZHQMQ7D6BRQ791fZQoaAZoCWgPQwi5cvbOqOR0QJSGlFKUaBVN6ANoFkdAxEC6UoKD03V9lChoBmgJaA9DCKotdZAXoHRAlIaUUpRoFU3oA2gWR0DERmXjENvwdX2UKGgGaAloD0MIYeKPog5adECUhpRSlGgVTegDaBZHQMRMFYzi0fJ1fZQoaAZoCWgPQwjNrnsrEuNzQJSGlFKUaBVN6ANoFkdAxFHAQDmr83V9lChoBmgJaA9DCCyf5XlwrXNAlIaUUpRoFU3oA2gWR0DEV2tQj2SMdX2UKGgGaAloD0MIRN/dypIEdECUhpRSlGgVTegDaBZHQMRdF4zzmOl1fZQoaAZoCWgPQwgrhNVYQqd0QJSGlFKUaBVN6ANoFkdAxGK+Axzq8nV9lChoBmgJaA9DCDf+RGXDz3RAlIaUUpRoFU3oA2gWR0DEaG8TYdyUdX2UKGgGaAloD0MIiXyXUhdzdUCUhpRSlGgVTegDaBZHQMRuK7JwKjV1fZQoaAZoCWgPQwgmUwWj0hJ1QJSGlFKUaBVN6ANoFkdAxHPOKZUkwHV9lChoBmgJaA9DCHkHeNJCHHVAlIaUUpRoFU3oA2gWR0DEeXTxI8QqdX2UKGgGaAloD0MI1CzQ7hA7dUCUhpRSlGgVTegDaBZHQMR/OsBIWgx1fZQoaAZoCWgPQwjiWBe30Q51QJSGlFKUaBVN6ANoFkdAxITpIHTqjnV9lChoBmgJaA9DCHrE6LlFv3RAlIaUUpRoFU3oA2gWR0DEipGfVZs9dX2UKGgGaAloD0MI3UCBd/LEdECUhpRSlGgVTegDaBZHQMSQStJvo/11fZQoaAZoCWgPQwh798d7Ff90QJSGlFKUaBVN6ANoFkdAxJX4q9XcQHV9lChoBmgJaA9DCBmsONWaHnVAlIaUUpRoFU3oA2gWR0DEm6pYNiH7dX2UKGgGaAloD0MImzi532G6dECUhpRSlGgVTegDaBZHQMSjwaGYa5x1fZQoaAZoCWgPQwhgj4mUZid1QJSGlFKUaBVN6ANoFkdAxKjpvBJqZnV9lChoBmgJaA9DCFwAGqVLIXVAlIaUUpRoFU3oA2gWR0DErqLnvDxcdX2UKGgGaAloD0MI5L7VOrFGdUCUhpRSlGgVTegDaBZHQMS0SMh5gPV1fZQoaAZoCWgPQwge4EkLlwB1QJSGlFKUaBVN6ANoFkdAxLn/xXnyNHV9lChoBmgJaA9DCORO6WD9KXVAlIaUUpRoFU3oA2gWR0DEv8UR3/xUdX2UKGgGaAloD0MImQ6dnndMdUCUhpRSlGgVTegDaBZHQMTFd4qgAZN1fZQoaAZoCWgPQwiJDKt44yZ1QJSGlFKUaBVN6ANoFkdAxMseIqsls3V9lChoBmgJaA9DCMTNqWRAJ3VAlIaUUpRoFU3oA2gWR0DE0M+oP07KdX2UKGgGaAloD0MIAoOkTytKdUCUhpRSlGgVTegDaBZHQMTWeX6Q/5d1fZQoaAZoCWgPQwi8eapDbh51QJSGlFKUaBVN6ANoFkdAxNwkU1yeZ3V9lChoBmgJaA9DCHdIMUDiUXVAlIaUUpRoFU3oA2gWR0DE4dCErXlKdX2UKGgGaAloD0MI0gFJ2LckdUCUhpRSlGgVTegDaBZHQMTneqT0QK91fZQoaAZoCWgPQwijycUYmOZ0QJSGlFKUaBVN6ANoFkdAxO0oSzPa+XV9lChoBmgJaA9DCIQpyqWx5HRAlIaUUpRoFU3oA2gWR0DE8vQXGff5dX2UKGgGaAloD0MI3UQtzW3+dECUhpRSlGgVTegDaBZHQMT4q7rcCYF1fZQoaAZoCWgPQwhS81XyMTx1QJSGlFKUaBVN6ANoFkdAxP5Yd2gWanV9lChoBmgJaA9DCHAlOzbC93RAlIaUUpRoFU3oA2gWR0DFBCBffGdadX2UKGgGaAloD0MIDFcHQFz5dECUhpRSlGgVTegDaBZHQMUJx3t8eCF1fZQoaAZoCWgPQwggmQ6dXkt1QJSGlFKUaBVN6ANoFkdAxQ9oDg62fHV9lChoBmgJaA9DCCSX/5D+c3VAlIaUUpRoFU3oA2gWR0DFFTTeZXuFdX2UKGgGaAloD0MI3gIJil8cdUCUhpRSlGgVTegDaBZHQMUa41Aqur91fZQoaAZoCWgPQwh4DI/9rCx1QJSGlFKUaBVN6ANoFkdAxSCICz1K5HV9lChoBmgJaA9DCC43GOowB3VAlIaUUpRoFU3oA2gWR0DFJkvYcvM9dX2UKGgGaAloD0MIrHE2HUEcdUCUhpRSlGgVTegDaBZHQMUr9mz8gp11fZQoaAZoCWgPQwgGLSRgdD11QJSGlFKUaBVN6ANoFkdAxTSJ6OYIB3V9lChoBmgJaA9DCOcb0T3rC3VAlIaUUpRoFU3oA2gWR0DFOjyDCgscdX2UKGgGaAloD0MIkBZnDDNddUCUhpRSlGgVTegDaBZHQMU/5zjWCmN1fZQoaAZoCWgPQwhYqaCi6jZ1QJSGlFKUaBVN6ANoFkdAxUUw+mm+CnV9lChoBmgJaA9DCNO9TurLD3VAlIaUUpRoFU3oA2gWR0DFSlMDEFW5dX2UKGgGaAloD0MIG/UQje5edUCUhpRSlGgVTegDaBZHQMVP7LyMDOl1fZQoaAZoCWgPQwhqwCDp02R1QJSGlFKUaBVN6ANoFkdAxVWa2Hck+3V9lChoBmgJaA9DCIyiBz5GgXVAlIaUUpRoFU3oA2gWR0DFW0GPRzBAdX2UKGgGaAloD0MIOnmRCTgudUCUhpRSlGgVTegDaBZHQMVg7R+BpYd1fZQoaAZoCWgPQwjGihpMA3J1QJSGlFKUaBVN6ANoFkdAxWajSvTw2HV9lChoBmgJaA9DCPpEniTdH3VAlIaUUpRoFU3oA2gWR0DFbFfT1CgLdX2UKGgGaAloD0MIHJlH/qAZdUCUhpRSlGgVTegDaBZHQMVx9zijtXx1fZQoaAZoCWgPQwgi+rX1Uyd1QJSGlFKUaBVN6ANoFkdAxXelG3nZCnV9lChoBmgJaA9DCDepaKx9JnVAlIaUUpRoFU3oA2gWR0DFfWP4CZF5dX2UKGgGaAloD0MIqBso8A5MdUCUhpRSlGgVTegDaBZHQMWDC+SKWLR1fZQoaAZoCWgPQwhoHyv4rTZ1QJSGlFKUaBVN6ANoFkdAxYi9GipNsXV9lChoBmgJaA9DCLrYtFKIsXVAlIaUUpRoFU3oA2gWR0DFjnjTfBN3dX2UKGgGaAloD0MI/IugMVOCdUCUhpRSlGgVTegDaBZHQMWUHOLR8dB1fZQoaAZoCWgPQwgwR4/f25V1QJSGlFKUaBVN6ANoFkdAxZnGqFyq/HV9lChoBmgJaA9DCN82UyHeRHVAlIaUUpRoFU3oA2gWR0DFn4KVyFPBdX2UKGgGaAloD0MIZaVJKShcdUCUhpRSlGgVTegDaBZHQMWlMdvCMxZ1fZQoaAZoCWgPQwgqc/ONaCh1QJSGlFKUaBVN6ANoFkdAxarx8uzyBnV9lChoBmgJaA9DCAcMkj5tTnVAlIaUUpRoFU3oA2gWR0DFsLXtWuHOdX2UKGgGaAloD0MIixu3mN+ydUCUhpRSlGgVTegDaBZHQMW2XR/NJOF1fZQoaAZoCWgPQwhB1H0AElp1QJSGlFKUaBVN6ANoFkdAxbwoETxoZnV9lChoBmgJaA9DCFIpdjTO0nRAlIaUUpRoFU3oA2gWR0DFxJXZh8YydX2UKGgGaAloD0MI4xk09M9idUCUhpRSlGgVTegDaBZHQMXKRPybx3F1fZQoaAZoCWgPQwhPWOIBJTN1QJSGlFKUaBVN6ANoFkdAxdACyHmA9XV9lChoBmgJaA9DCJGadjHNL3VAlIaUUpRoFU3oA2gWR0DF1awFC9h7dX2UKGgGaAloD0MI6uv5mmUwdUCUhpRSlGgVTegDaBZHQMXbWpJf6XV1fZQoaAZoCWgPQwit3uF26At1QJSGlFKUaBVN6ANoFkdAxeD8uRs/IXV9lChoBmgJaA9DCBTMmIJ1OnVAlIaUUpRoFU3oA2gWR0DF5mJ3xFy8dX2UKGgGaAloD0MIGXRC6CAodUCUhpRSlGgVTegDaBZHQMXrkeS0Sh91fZQoaAZoCWgPQwg1JsRcEmV1QJSGlFKUaBVN6ANoFkdAxfEI2Hck+3V9lChoBmgJaA9DCDNTWn+LAHVAlIaUUpRoFU3oA2gWR0DF9q8Z9/jLdX2UKGgGaAloD0MIizcyj3z9dECUhpRSlGgVTegDaBZHQMX8VH1e0HB1fZQoaAZoCWgPQwiES8ec5yx1QJSGlFKUaBVN6ANoFkdAxgIWuDBdlnV9lChoBmgJaA9DCIhjXdyG3HRAlIaUUpRoFU3oA2gWR0DGB8zrzGxVdX2UKGgGaAloD0MItRfRdgy9dECUhpRSlGgVTegDaBZHQMYNfEzGgjB1fZQoaAZoCWgPQwgmqUwxxyV1QJSGlFKUaBVN6ANoFkdAxhNGHN5dGHV9lChoBmgJaA9DCCZRL/i093RAlIaUUpRoFU3oA2gWR0DGGOwu27WedX2UKGgGaAloD0MImWclrXg3dUCUhpRSlGgVTegDaBZHQMYemh4D9wZ1fZQoaAZoCWgPQwg91owM8jx1QJSGlFKUaBVN6ANoFkdAxiRk8yN4q3V9lChoBmgJaA9DCFuyKsLNbHVAlIaUUpRoFU3oA2gWR0DGKgaSq2jPdX2UKGgGaAloD0MIMA+Z8uFIdUCUhpRSlGgVTegDaBZHQMYvtCSaEzx1fZQoaAZoCWgPQwj2RNeFXyl1QJSGlFKUaBVN6ANoFkdAxjWA8JUo8nV9lChoBmgJaA9DCKYqbXENYnVAlIaUUpRoFU3oA2gWR0DGOzG/zreJdX2UKGgGaAloD0MI521sduTcdECUhpRSlGgVTegDaBZHQMZA3tzjm0V1fZQoaAZoCWgPQwii725lSd10QJSGlFKUaBVN6ANoFkdAxkadVvuPWHV9lChoBmgJaA9DCIgwfho3p3RAlIaUUpRoFU3oA2gWR0DGTEiWHDaXdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 990000,
    "buffer_size": 1,
    "batch_size": 256,
    "learning_starts": 10000,
    "tau": 0.005,
    "gamma": 0.9999,
    "gradient_steps": 1,
    "optimize_memory_usage": false,
    "replay_buffer_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
        "__module__": "stable_baselines3.common.buffers",
        "__doc__": "\n    Replay buffer used in off-policy algorithms like SAC/TD3.\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        of the replay buffer which reduces by almost a factor two the memory used,\n        at a cost of more complexity.\n        See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n        and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n        Cannot be used in combination with handle_timeout_termination.\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ",
        "__init__": "<function ReplayBuffer.__init__ at 0x7fba794ee5e0>",
        "add": "<function ReplayBuffer.add at 0x7fba794ee670>",
        "sample": "<function ReplayBuffer.sample at 0x7fba794ee700>",
        "_get_samples": "<function ReplayBuffer._get_samples at 0x7fba794ee790>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fba799049c0>"
    },
    "replay_buffer_kwargs": {},
    "train_freq": {
        ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
        ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
    },
    "use_sde_at_warmup": false,
    "target_entropy": -2.0,
    "ent_coef": "auto",
    "target_update_interval": 1,
    "top_quantiles_to_drop_per_net": 2,
    "batch_norm_stats": [],
    "batch_norm_stats_target": []
}