|
{ |
|
"policy_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=", |
|
"__module__": "sb3_contrib.tqc.policies", |
|
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", |
|
"__init__": "<function TQCPolicy.__init__ at 0x7f9ef7f25670>", |
|
"_build": "<function TQCPolicy._build at 0x7f9ef7f25700>", |
|
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f9ef7f25790>", |
|
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f9ef7f25820>", |
|
"make_actor": "<function TQCPolicy.make_actor at 0x7f9ef7f258b0>", |
|
"make_critic": "<function TQCPolicy.make_critic at 0x7f9ef7f25940>", |
|
"forward": "<function TQCPolicy.forward at 0x7f9ef7f259d0>", |
|
"_predict": "<function TQCPolicy._predict at 0x7f9ef7f25a60>", |
|
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f9ef7f25af0>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7f9ef7f26a40>" |
|
}, |
|
"verbose": 1, |
|
"policy_kwargs": { |
|
"use_sde": false |
|
}, |
|
"observation_space": { |
|
":type:": "<class 'gym.spaces.box.Box'>", |
|
":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", |
|
"dtype": "float64", |
|
"_shape": [ |
|
8 |
|
], |
|
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", |
|
"high": "[inf inf inf inf inf inf inf inf]", |
|
"bounded_below": "[False False False False False False False False]", |
|
"bounded_above": "[False False False False False False False False]", |
|
"_np_random": null |
|
}, |
|
"action_space": { |
|
":type:": "<class 'gym.spaces.box.Box'>", |
|
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", |
|
"dtype": "float32", |
|
"_shape": [ |
|
2 |
|
], |
|
"low": "[-1. -1.]", |
|
"high": "[1. 1.]", |
|
"bounded_below": "[ True True]", |
|
"bounded_above": "[ True True]", |
|
"_np_random": "RandomState(MT19937)" |
|
}, |
|
"n_envs": 1, |
|
"num_timesteps": 1000000, |
|
"_total_timesteps": 1000000, |
|
"_num_timesteps_at_start": 0, |
|
"seed": 0, |
|
"action_noise": null, |
|
"start_time": 1676702539518361037, |
|
"learning_rate": 0.0003, |
|
"tensorboard_log": "runs/Swimmer-v3__tqc__4006179270__1676702536/Swimmer-v3", |
|
"lr_schedule": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" |
|
}, |
|
"_last_obs": null, |
|
"_last_episode_starts": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" |
|
}, |
|
"_last_original_obs": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAMRqfLHYKgVAQ8DrYu1G8b+w4hbNX7bsP/7KO6khLcQ/iialD4WC2b8heqgRkorTv25dYq05weS/NlnIelD3BkCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLCIaUjAFDlHSUUpQu" |
|
}, |
|
"_episode_num": 1000, |
|
"use_sde": false, |
|
"sde_sample_freq": -1, |
|
"_current_progress_remaining": 0.0, |
|
"ep_info_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITODW3TxdMUCUhpRSlIwBbJRN6AOMAXSUR0C6dLZntfG/dX2UKGgGaAloD0MIvAZ96e3/LECUhpRSlGgVTegDaBZHQLp8RY9Pk7x1fZQoaAZoCWgPQwiLiGLyBkAoQJSGlFKUaBVN6ANoFkdAuoPUnE2pAHV9lChoBmgJaA9DCBdmoZ3TvBtAlIaUUpRoFU3oA2gWR0C6i2QiFCb+dX2UKGgGaAloD0MI+WcG8YFdH0CUhpRSlGgVTegDaBZHQLqS7EwnH/91fZQoaAZoCWgPQwgIV0Chnk4YQJSGlFKUaBVN6ANoFkdAuppq+tbLU3V9lChoBmgJaA9DCFnbFI+LChVAlIaUUpRoFU3oA2gWR0C6odifg75mdX2UKGgGaAloD0MIf8ADAwgf6b+UhpRSlGgVTegDaBZHQLqpQ7Hhjvx1fZQoaAZoCWgPQwjVlGQdjmYvwJSGlFKUaBVN6ANoFkdAurC0Ht4RmXV9lChoBmgJaA9DCH7k1qTb0hHAlIaUUpRoFU3oA2gWR0C6uBzNIK+jdX2UKGgGaAloD0MIcvkP6bdnJMCUhpRSlGgVTegDaBZHQLq/gX2/SIB1fZQoaAZoCWgPQwjQfw9eu8wuwJSGlFKUaBVN6ANoFkdAusbl1Tzd13V9lChoBmgJaA9DCPwYc9cSTkdAlIaUUpRoFU3oA2gWR0C6zlA88s+WdX2UKGgGaAloD0MI4uZUMgCUPECUhpRSlGgVTegDaBZHQLrVtsImgJ11fZQoaAZoCWgPQwiE8j6O5qA4QJSGlFKUaBVN6ANoFkdAut0jYK6WgXV9lChoBmgJaA9DCMr6zcR0V0JAlIaUUpRoFU3oA2gWR0C65JM8DB/JdX2UKGgGaAloD0MIx9gJL8GFPECUhpRSlGgVTegDaBZHQLrsJlkH2RJ1fZQoaAZoCWgPQwg/cJUnEH4wQJSGlFKUaBVN6ANoFkdAuvO1Q+EAYHV9lChoBmgJaA9DCEeq7/yi0DRAlIaUUpRoFU3oA2gWR0C6+0dhqj8DdX2UKGgGaAloD0MIARk6dlC5E8CUhpRSlGgVTegDaBZHQLsC2HRTjvN1fZQoaAZoCWgPQwigGcQHdvw2QJSGlFKUaBVN6ANoFkdAuwprN+so2HV9lChoBmgJaA9DCGueI/JdbkNAlIaUUpRoFU3oA2gWR0C7Efa9K28adX2UKGgGaAloD0MIX10VqMUMPkCUhpRSlGgVTegDaBZHQLsZfR4hUzd1fZQoaAZoCWgPQwh+AFKbONE5QJSGlFKUaBVN6ANoFkdAuyEDOyE+PnV9lChoBmgJaA9DCIRlbOhm2z5AlIaUUpRoFU3oA2gWR0C7KIuee4CqdX2UKGgGaAloD0MINPPkmgIvQkCUhpRSlGgVTegDaBZHQLszfUcXFcZ1fZQoaAZoCWgPQwhp4h3gSW9BQJSGlFKUaBVN6ANoFkdAuzrbVnVXm3V9lChoBmgJaA9DCAn6Cz1i5kJAlIaUUpRoFU3oA2gWR0C7QjiC8OCodX2UKGgGaAloD0MIo+nsZHD0GECUhpRSlGgVTegDaBZHQLtJnXzDn/11fZQoaAZoCWgPQwicUfNV8p9HQJSGlFKUaBVN6ANoFkdAu1EGYlY2bXV9lChoBmgJaA9DCGsotRfRRhNAlIaUUpRoFU3oA2gWR0C7WHiPp6hQdX2UKGgGaAloD0MIS1ewjXhSSECUhpRSlGgVTegDaBZHQLtf7ExIre91fZQoaAZoCWgPQwg66BIOvQVFQJSGlFKUaBVN6ANoFkdAu2dWCBf8dnV9lChoBmgJaA9DCERpb/CFoUhAlIaUUpRoFU3oA2gWR0C7bsAA6uGLdX2UKGgGaAloD0MItHdGW5WsPkCUhpRSlGgVTegDaBZHQLt2LSPluFZ1fZQoaAZoCWgPQwip91ROe4BAQJSGlFKUaBVN6ANoFkdAu32p24d6s3V9lChoBmgJaA9DCMNHxJRInEJAlIaUUpRoFU3oA2gWR0C7hSkO3DvWdX2UKGgGaAloD0MIQL0ZNV+NQkCUhpRSlGgVTegDaBZHQLuMk1og3cZ1fZQoaAZoCWgPQwh+chQgCipAQJSGlFKUaBVN6ANoFkdAu5P5/LDAJ3V9lChoBmgJaA9DCElpNo/D9kRAlIaUUpRoFU3oA2gWR0C7m2ArtmcwdX2UKGgGaAloD0MIZd8Vwf+oQUCUhpRSlGgVTegDaBZHQLuixU7Sy+p1fZQoaAZoCWgPQwjH8q56wPpFQJSGlFKUaBVN6ANoFkdAu6oojLSuyXV9lChoBmgJaA9DCC8Whsjp4UdAlIaUUpRoFU3oA2gWR0C7sZ04JeE7dX2UKGgGaAloD0MIrS8S2nImSECUhpRSlGgVTegDaBZHQLu5KTh5xBF1fZQoaAZoCWgPQwg9YB4y5f9AQJSGlFKUaBVN6ANoFkdAu8C5AbADaHV9lChoBmgJaA9DCPD3i9mSw0RAlIaUUpRoFU3oA2gWR0C7yEV7MPjGdX2UKGgGaAloD0MI1eyBVmAuSECUhpRSlGgVTegDaBZHQLvP0i7kGRp1fZQoaAZoCWgPQwgK8x5nmowyQJSGlFKUaBVN6ANoFkdAu9dhIczZYnV9lChoBmgJaA9DCCKJXkaxGDhAlIaUUpRoFU3oA2gWR0C73vFcMVk+dX2UKGgGaAloD0MIFcjsLHoPL0CUhpRSlGgVTegDaBZHQLvmerDZUUB1fZQoaAZoCWgPQwh7a2CrBAsqQJSGlFKUaBVN6ANoFkdAu/F4ZccENnV9lChoBmgJaA9DCOnuOhvy7zpAlIaUUpRoFU3oA2gWR0C7+QAzDXOGdX2UKGgGaAloD0MIVwT/W8mgQUCUhpRSlGgVTegDaBZHQLwAi/oaDPJ1fZQoaAZoCWgPQwiwdakR+mtGQJSGlFKUaBVN6ANoFkdAvAgUzHjp93V9lChoBmgJaA9DCLH5uDZUHEBAlIaUUpRoFU3oA2gWR0C8D6DK1XvIdX2UKGgGaAloD0MIyThGske4NUCUhpRSlGgVTegDaBZHQLwXLttALRd1fZQoaAZoCWgPQwiWmGclrQwyQJSGlFKUaBVN6ANoFkdAvB6io0hvBXV9lChoBmgJaA9DCNTX8zXLSTRAlIaUUpRoFU3oA2gWR0C8Jg4ZdfLLdX2UKGgGaAloD0MItoZSexHpMkCUhpRSlGgVTegDaBZHQLwteeRPoFF1fZQoaAZoCWgPQwga9+Y3TPw+QJSGlFKUaBVN6ANoFkdAvDTs6V+qi3V9lChoBmgJaA9DCFg89UiDGxlAlIaUUpRoFU3oA2gWR0C8PGt1dPcjdX2UKGgGaAloD0MIvJUlOsvmQECUhpRSlGgVTegDaBZHQLxD59ovi991fZQoaAZoCWgPQwhnfcoxWaxAQJSGlFKUaBVN6ANoFkdAvEu0ubqhUXV9lChoBmgJaA9DCArzHmeavEJAlIaUUpRoFU3oA2gWR0C8Uy5xiobXdX2UKGgGaAloD0MIEFmkiXcA87+UhpRSlGgVTegDaBZHQLxawTTfBN51fZQoaAZoCWgPQwg1lxsMdYJCQJSGlFKUaBVN6ANoFkdAvGJQVEd/8XV9lChoBmgJaA9DCEerWtJREENAlIaUUpRoFU3oA2gWR0C8adoLLIPtdX2UKGgGaAloD0MIm+Wy0TnZRkCUhpRSlGgVTegDaBZHQLxxTmuDBdl1fZQoaAZoCWgPQwhdN6W8ViIbwJSGlFKUaBVN6ANoFkdAvHjKqdYnv3V9lChoBmgJaA9DCBGsqpffyRlAlIaUUpRoFU3oA2gWR0C8gDn1J17qdX2UKGgGaAloD0MItFpgj4n8RECUhpRSlGgVTegDaBZHQLyHte0G/vh1fZQoaAZoCWgPQwhmEB/Y8Uc1QJSGlFKUaBVN6ANoFkdAvI8pshxHXnV9lChoBmgJaA9DCG03wTdNd0RAlIaUUpRoFU3oA2gWR0C8lp56IFeOdX2UKGgGaAloD0MIZmg8EcTlR0CUhpRSlGgVTegDaBZHQLyeKdYnv2J1fZQoaAZoCWgPQwhYHM78ahY/QJSGlFKUaBVN6ANoFkdAvKW5DIBBA3V9lChoBmgJaA9DCHi13JkJ8jtAlIaUUpRoFU3oA2gWR0C8sMVkMCtBdX2UKGgGaAloD0MICVBTy9acRkCUhpRSlGgVTegDaBZHQLy4Vf6oESx1fZQoaAZoCWgPQwhE/S5szUpFQJSGlFKUaBVN6ANoFkdAvL/ktkFwDXV9lChoBmgJaA9DCLKBdLFpI0lAlIaUUpRoFU3oA2gWR0C8x3TVlPJrdX2UKGgGaAloD0MIx6F+F7YoSUCUhpRSlGgVTegDaBZHQLzPBQ0oBq91fZQoaAZoCWgPQwjE6/oFuytHQJSGlFKUaBVN6ANoFkdAvNaBmHxjKHV9lChoBmgJaA9DCEVI3c6+mktAlIaUUpRoFU3oA2gWR0C83ftJjDsMdX2UKGgGaAloD0MI4SU49YEMSECUhpRSlGgVTegDaBZHQLzledDYywh1fZQoaAZoCWgPQwi9cOfCSBlLQJSGlFKUaBVN6ANoFkdAvOz6KYRdyHV9lChoBmgJaA9DCFSrr64KoE1AlIaUUpRoFU3oA2gWR0C89G6Ei+tbdX2UKGgGaAloD0MI4q3zb5cvTECUhpRSlGgVTegDaBZHQLz73/XoTwl1fZQoaAZoCWgPQwgewvhp3KNDQJSGlFKUaBVN6ANoFkdAvQNT+JgssnV9lChoBmgJaA9DCPKaV3VWCyxAlIaUUpRoFU3oA2gWR0C9CtxJiAlOdX2UKGgGaAloD0MIwEAQIEMfLkCUhpRSlGgVTegDaBZHQL0SZzt1IRR1fZQoaAZoCWgPQwjiAzv+CzwqQJSGlFKUaBVN6ANoFkdAvRnunEVFhHV9lChoBmgJaA9DCB2Txf1HJjpAlIaUUpRoFU3oA2gWR0C9IXg3kxREdX2UKGgGaAloD0MIrHR3nQ3hQUCUhpRSlGgVTegDaBZHQL0pAVOsT391fZQoaAZoCWgPQwhweEFEal46QJSGlFKUaBVN6ANoFkdAvTCJAu7HyXV9lChoBmgJaA9DCPmjqDP36DVAlIaUUpRoFU3oA2gWR0C9OA7O7g89dX2UKGgGaAloD0MIiXrBpzlNNECUhpRSlGgVTegDaBZHQL0/lZH/cWV1fZQoaAZoCWgPQwhRweEFEUVMQJSGlFKUaBVN6ANoFkdAvUcfBJqZdHV9lChoBmgJaA9DCKPqVzofRjdAlIaUUpRoFU3oA2gWR0C9Tpzz7MxHdX2UKGgGaAloD0MIHXV0XI3IN0CUhpRSlGgVTegDaBZHQL1WKJp35et1fZQoaAZoCWgPQwi8IY0KnPBCQJSGlFKUaBVN6ANoFkdAvV20rsjVx3V9lChoBmgJaA9DCA9Dq5MzzDVAlIaUUpRoFU3oA2gWR0C9ZUKGpMpPdWUu" |
|
}, |
|
"ep_success_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" |
|
}, |
|
"_n_updates": 990000, |
|
"buffer_size": 1, |
|
"batch_size": 256, |
|
"learning_starts": 10000, |
|
"tau": 0.005, |
|
"gamma": 0.9999, |
|
"gradient_steps": 1, |
|
"optimize_memory_usage": false, |
|
"replay_buffer_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", |
|
"__module__": "stable_baselines3.common.buffers", |
|
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", |
|
"__init__": "<function ReplayBuffer.__init__ at 0x7f9ef83ad5e0>", |
|
"add": "<function ReplayBuffer.add at 0x7f9ef83ad670>", |
|
"sample": "<function ReplayBuffer.sample at 0x7f9ef83ad700>", |
|
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f9ef83ad790>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7f9ef83a4e00>" |
|
}, |
|
"replay_buffer_kwargs": {}, |
|
"train_freq": { |
|
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", |
|
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" |
|
}, |
|
"use_sde_at_warmup": false, |
|
"target_entropy": -2.0, |
|
"ent_coef": "auto", |
|
"target_update_interval": 1, |
|
"top_quantiles_to_drop_per_net": 2, |
|
"batch_norm_stats": [], |
|
"batch_norm_stats_target": [] |
|
} |