Quentin Gallouédec commited on
Commit
d741f7b
1 Parent(s): b69c674

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLanderContinuous-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TRPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLanderContinuous-v2
16
+ type: LunarLanderContinuous-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 233.11 +/- 15.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TRPO** Agent playing **LunarLanderContinuous-v2**
25
+ This is a trained model of a **TRPO** agent playing **LunarLanderContinuous-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo trpo --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo trpo --env LunarLanderContinuous-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo trpo --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo trpo --env LunarLanderContinuous-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo trpo --env LunarLanderContinuous-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo trpo --env LunarLanderContinuous-v2 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('n_critic_updates', 20),
66
+ ('n_envs', 2),
67
+ ('n_steps', 1024),
68
+ ('n_timesteps', 100000.0),
69
+ ('normalize', True),
70
+ ('policy', 'MlpPolicy'),
71
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
72
+ ```
args.yml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - trpo
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - LunarLanderContinuous-v2
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 20
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - max_total_trials
23
+ - null
24
+ - - n_eval_envs
25
+ - 5
26
+ - - n_evaluations
27
+ - null
28
+ - - n_jobs
29
+ - 1
30
+ - - n_startup_trials
31
+ - 10
32
+ - - n_timesteps
33
+ - -1
34
+ - - n_trials
35
+ - 500
36
+ - - no_optim_plots
37
+ - false
38
+ - - num_threads
39
+ - -1
40
+ - - optimization_log_path
41
+ - null
42
+ - - optimize_hyperparameters
43
+ - false
44
+ - - progress
45
+ - false
46
+ - - pruner
47
+ - median
48
+ - - sampler
49
+ - tpe
50
+ - - save_freq
51
+ - -1
52
+ - - save_replay_buffer
53
+ - false
54
+ - - seed
55
+ - 1446053220
56
+ - - storage
57
+ - null
58
+ - - study_name
59
+ - null
60
+ - - tensorboard_log
61
+ - runs/LunarLanderContinuous-v2__trpo__1446053220__1670945307
62
+ - - track
63
+ - true
64
+ - - trained_agent
65
+ - ''
66
+ - - truncate_last_trajectory
67
+ - true
68
+ - - uuid
69
+ - false
70
+ - - vec_env
71
+ - dummy
72
+ - - verbose
73
+ - 1
74
+ - - wandb_entity
75
+ - openrlbenchmark
76
+ - - wandb_project_name
77
+ - sb3
78
+ - - yaml_file
79
+ - null
config.yml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - n_critic_updates
3
+ - 20
4
+ - - n_envs
5
+ - 2
6
+ - - n_steps
7
+ - 1024
8
+ - - n_timesteps
9
+ - 100000.0
10
+ - - normalize
11
+ - true
12
+ - - policy
13
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5230e37e4d20b06629caffaafa3a59c75125c869174c46aaf40568684267c184
3
+ size 164480
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 233.10679639999998, "std_reward": 15.604505222882018, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T17:15:34.863192"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b015f7c9986a082f5340932caddbb36675d5720e2790e36247abeaa361db2d39
3
+ size 8965
trpo-LunarLanderContinuous-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df200f52f73644d6669e4e124b48e3ab731d64a3e4d4b5419de48ab632129fbf
3
+ size 105321
trpo-LunarLanderContinuous-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
trpo-LunarLanderContinuous-v2/data ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b2c650d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b2c650dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b2c650e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b2c650ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9b2c650f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9b2c652040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9b2c6520d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b2c652160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9b2c6521f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b2c652280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b2c652310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b2c6523a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f9b2c64ee40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 2
43
+ ],
44
+ "low": "[-1. -1.]",
45
+ "high": "[1. 1.]",
46
+ "bounded_below": "[ True True]",
47
+ "bounded_above": "[ True True]",
48
+ "_np_random": "RandomState(MT19937)"
49
+ },
50
+ "n_envs": 1,
51
+ "num_timesteps": 100352,
52
+ "_total_timesteps": 100000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": 0,
55
+ "action_noise": null,
56
+ "start_time": 1670945309866398217,
57
+ "learning_rate": 0.001,
58
+ "tensorboard_log": "runs/LunarLanderContinuous-v2__trpo__1446053220__1670945307/LunarLanderContinuous-v2",
59
+ "lr_schedule": {
60
+ ":type:": "<class 'function'>",
61
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
62
+ },
63
+ "_last_obs": null,
64
+ "_last_episode_starts": {
65
+ ":type:": "<class 'numpy.ndarray'>",
66
+ ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
67
+ },
68
+ "_last_original_obs": {
69
+ ":type:": "<class 'numpy.ndarray'>",
70
+ ":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAYe7spGLM/D7TGvmKjBb8us5E7hwm0PQAAAAAAAAAAACyRu5EwtT94xOW+hnNSPnJxqDveLtA9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwJLCIaUjAFDlHSUUpQu"
71
+ },
72
+ "_episode_num": 0,
73
+ "use_sde": false,
74
+ "sde_sample_freq": -1,
75
+ "_current_progress_remaining": -0.0035199999999999676,
76
+ "ep_info_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAOMZNPQJQECUhpRSlIwBbJRLfIwBdJRHQDIgRoRIz311fZQoaAZoCWgPQwhBRGraxRpQwJSGlFKUaBVLaGgWR0AyaKP4mCyydX2UKGgGaAloD0MIBmaFIt2PAMCUhpRSlGgVS19oFkdAMyoqkM1CPnV9lChoBmgJaA9DCCwOZ3413U5AlIaUUpRoFUtoaBZHQDN9FOO801t1fZQoaAZoCWgPQwjRWzy8561ewJSGlFKUaBVN6ANoFkdAM8hHLA57xHV9lChoBmgJaA9DCLPTD+oiHUDAlIaUUpRoFUucaBZHQDPeUB4lhPV1fZQoaAZoCWgPQwjL1Y9N8mshwJSGlFKUaBVLb2gWR0Az7bgCOmzjdX2UKGgGaAloD0MIcH1Yb9T6E8CUhpRSlGgVS3FoFkdANALlq8DjinV9lChoBmgJaA9DCEzGMZI9AgxAlIaUUpRoFUt8aBZHQDQV5VwPy091fZQoaAZoCWgPQwg42nHD73Y8QJSGlFKUaBVLfGgWR0A0Kxk/bCaadX2UKGgGaAloD0MIXHaIf9jSHUCUhpRSlGgVS4hoFkdANEIG6f8Mu3V9lChoBmgJaA9DCDeq04GsFzTAlIaUUpRoFUtnaBZHQDRMuTRplBh1fZQoaAZoCWgPQwgzNnSzP8g5QJSGlFKUaBVLimgWR0A0epqREF4cdX2UKGgGaAloD0MI6E6w/zqXJcCUhpRSlGgVS7FoFkdANMxzRx95QnV9lChoBmgJaA9DCNNKIZBLHP2/lIaUUpRoFUuaaBZHQDW03VCojwB1fZQoaAZoCWgPQwjm6zL8p3c1wJSGlFKUaBVN6ANoFkdAN9M8gZCOWHV9lChoBmgJaA9DCOHurN12gT5AlIaUUpRoFUtlaBZHQDgbo8p1A7h1fZQoaAZoCWgPQwhGC9C2mgFUwJSGlFKUaBVN6ANoFkdAOkkuQIUrTnV9lChoBmgJaA9DCAvRIXAkYDdAlIaUUpRoFUuSaBZHQDq0HbAUL2J1fZQoaAZoCWgPQwjkZU0s8HpYwJSGlFKUaBVN6ANoFkdAPJUp/gBLf3V9lChoBmgJaA9DCMTSwI9qSBpAlIaUUpRoFU3oA2gWR0BRppzLfUF0dX2UKGgGaAloD0MIQ3Vz8bc1N8CUhpRSlGgVTegDaBZHQFIciy6cy311fZQoaAZoCWgPQwjltRK6Sw5DwJSGlFKUaBVN6ANoFkdAUq83WFvhqHV9lChoBmgJaA9DCBe86CtIIxdAlIaUUpRoFU3oA2gWR0BTEujM3ZPEdX2UKGgGaAloD0MIbYyd8BJZVcCUhpRSlGgVTegDaBZHQFOzYEnssxx1fZQoaAZoCWgPQwgYP417819MwJSGlFKUaBVN6ANoFkdAVBon1FpfyHV9lChoBmgJaA9DCCs0EMtmHilAlIaUUpRoFU3oA2gWR0BUux7RfF72dX2UKGgGaAloD0MIJnMs76pnAMCUhpRSlGgVTegDaBZHQFU+gQ6IWP91fZQoaAZoCWgPQwg9EFmkiXNOwJSGlFKUaBVN6ANoFkdAVcqlXRw6yXV9lChoBmgJaA9DCBJOC170dQzAlIaUUpRoFU3oA2gWR0BWTX2ZiNKidX2UKGgGaAloD0MIKC1cVmGbI8CUhpRSlGgVTegDaBZHQFb8Ra5f+jx1fZQoaAZoCWgPQwiynITSFyY6wJSGlFKUaBVN6ANoFkdAV2NyCFsYVXV9lChoBmgJaA9DCJuRQe4ikkTAlIaUUpRoFU3oA2gWR0BX5mT9sJpndX2UKGgGaAloD0MIthSQ9j/0QUCUhpRSlGgVTegDaBZHQFhTuqm0mdB1fZQoaAZoCWgPQwgT9Bd6xBBAQJSGlFKUaBVN6ANoFkdAWRkEZBLPEHV9lChoBmgJaA9DCLAEUmLXvj9AlIaUUpRoFU3oA2gWR0BZobXcxj8UdX2UKGgGaAloD0MIy73ArFDUJkCUhpRSlGgVTegDaBZHQFpOnGsFMZh1fZQoaAZoCWgPQwjJ5NTOMJkzQJSGlFKUaBVN6ANoFkdAWph/DtPYWnV9lChoBmgJaA9DCHe7XpoiGkjAlIaUUpRoFU3oA2gWR0BbDY4EOiFkdX2UKGgGaAloD0MIA+0OKQbgPkCUhpRSlGgVTegDaBZHQFutgxrSE151fZQoaAZoCWgPQwjfGW1VEp02QJSGlFKUaBVN6ANoFkdAXCoolUp/gHV9lChoBmgJaA9DCN+nqtBAnB3AlIaUUpRoFU3oA2gWR0BcrDpTuOS4dX2UKGgGaAloD0MIxNDq5AwFB8CUhpRSlGgVTegDaBZHQF0lP5YYBNp1fZQoaAZoCWgPQwiazHhb6WhUQJSGlFKUaBVN6ANoFkdAXaKw9q1w53V9lChoBmgJaA9DCDbmdcQhUVNAlIaUUpRoFU3oA2gWR0BeMoEnssxxdX2UKGgGaAloD0MIAyLElbPBU0CUhpRSlGgVTegDaBZHQF6kmnfl6qt1fZQoaAZoCWgPQwhxk1FlGMcuQJSGlFKUaBVN6ANoFkdAYV9l+Vkc0nV9lChoBmgJaA9DCMx7nGnCnENAlIaUUpRoFU3oA2gWR0BhngQe3hGZdX2UKGgGaAloD0MIiuYBLPI9Q0CUhpRSlGgVTegDaBZHQGHXXI2fkFR1fZQoaAZoCWgPQwjbwB2oU3BEQJSGlFKUaBVN6ANoFkdAYhftqHoHLXV9lChoBmgJaA9DCFn4+lqXSFBAlIaUUpRoFU3oA2gWR0BiVTNMXaakdX2UKGgGaAloD0MIGqTgKeQTU0CUhpRSlGgVTegDaBZHQGKY7KaG5+Z1fZQoaAZoCWgPQwjpYWh1cnxLQJSGlFKUaBVN6ANoFkdAYtMjKPn0TXV9lChoBmgJaA9DCJMYBFYOMVxAlIaUUpRoFU3oA2gWR0BjC6Ww/xDtdX2UKGgGaAloD0MIxRuZR/5oY0CUhpRSlGgVTegDaBZHQGM7GAbyYol1fZQoaAZoCWgPQwgmVdtNcHlhQJSGlFKUaBVN6ANoFkdAY3iCr92ovXV9lChoBmgJaA9DCIFZoUj3MFdAlIaUUpRoFU3oA2gWR0BjtYFvAGjcdX2UKGgGaAloD0MImGvRArTfWkCUhpRSlGgVTegDaBZHQGPq1/DtPYZ1fZQoaAZoCWgPQwjZeoZwTGtkQJSGlFKUaBVN6ANoFkdAZBea/ATIvXV9lChoBmgJaA9DCJSl1vsN8mxAlIaUUpRoFU0VAWgWR0BkPsRaouPFdX2UKGgGaAloD0MI6/6xEB0qX0CUhpRSlGgVTegDaBZHQGRNI3BHkLh1fZQoaAZoCWgPQwg8LxUb89hbQJSGlFKUaBVN6ANoFkdAZKZmfXf643V9lChoBmgJaA9DCJWZ0vpb3l1AlIaUUpRoFU3oA2gWR0BktLTMJQchdX2UKGgGaAloD0MI3UWYolzvXUCUhpRSlGgVTegDaBZHQGURbBO58Sh1fZQoaAZoCWgPQwiEY5Y9CQQ5QJSGlFKUaBVLqmgWR0BlMHEqDsdDdX2UKGgGaAloD0MIwsJJmj/QXUCUhpRSlGgVTegDaBZHQGUxGJvYODt1fZQoaAZoCWgPQwj4a7JGPVNXQJSGlFKUaBVN6ANoFkdAZZLGvOhTO3V9lChoBmgJaA9DCDi6SnfXH1xAlIaUUpRoFU3oA2gWR0Blky9Zid8RdX2UKGgGaAloD0MI3LsGfelRTECUhpRSlGgVS5toFkdAZZl0q6OHWXV9lChoBmgJaA9DCIcZGk8EalxAlIaUUpRoFU3oA2gWR0Bl+dDUmUnpdX2UKGgGaAloD0MIO6dZoN3cVkCUhpRSlGgVTegDaBZHQGYJDLSuyNZ1fZQoaAZoCWgPQwjgS+FBs5xYQJSGlFKUaBVN6ANoFkdAZl6wosqaw3V9lChoBmgJaA9DCAXB49u7QmBAlIaUUpRoFU3oA2gWR0BmaVsLv1DjdX2UKGgGaAloD0MInx1wXTHlXUCUhpRSlGgVTegDaBZHQGehWECeVcF1fZQoaAZoCWgPQwjQ8GYN3t1hQJSGlFKUaBVN6ANoFkdAZ6ybwz+FUXV9lChoBmgJaA9DCLqBAu/kvF1AlIaUUpRoFU3oA2gWR0BoFSzcAR02dX2UKGgGaAloD0MIQ1ciUP24XkCUhpRSlGgVTegDaBZHQGgkPQnhKlJ1fZQoaAZoCWgPQwiunpPet/hgQJSGlFKUaBVN6ANoFkdAaHpoIv8IiXV9lChoBmgJaA9DCHjUmBBz51lAlIaUUpRoFU3oA2gWR0Bog9foicG1dX2UKGgGaAloD0MIuoYZGk/2VkCUhpRSlGgVTegDaBZHQGjHgrQPZqV1fZQoaAZoCWgPQwjxRuaRPxxeQJSGlFKUaBVN6ANoFkdAaOAyC4Bmw3V9lChoBmgJaA9DCDupL0u7LW1AlIaUUpRoFU0WAWgWR0Bo5tVR1oxpdX2UKGgGaAloD0MIGNF2TF09bkCUhpRSlGgVTRsBaBZHQGjv/cvduYR1fZQoaAZoCWgPQwgf2scKfgpiQJSGlFKUaBVN6ANoFkdAaUlLPD50sHV9lChoBmgJaA9DCHbj3ZExZWNAlIaUUpRoFU3oA2gWR0BpUzIgeRxMdX2UKGgGaAloD0MIZB75g4HqX0CUhpRSlGgVTegDaBZHQGmk3LFGXol1fZQoaAZoCWgPQwiaP6a1aZphQJSGlFKUaBVN6ANoFkdAaa9X4CZF5XV9lChoBmgJaA9DCEnW4eiq4mBAlIaUUpRoFU3oA2gWR0BqBpgJC0F9dX2UKGgGaAloD0MIuJOI8K/4YUCUhpRSlGgVTegDaBZHQGoQlMIu5Bl1fZQoaAZoCWgPQwjiOVtAaPdbQJSGlFKUaBVN6ANoFkdAam4x20Re1XV9lChoBmgJaA9DCGSSkbOwsltAlIaUUpRoFU3oA2gWR0Bqewb+98JEdX2UKGgGaAloD0MI6DBfXgBbYUCUhpRSlGgVTegDaBZHQGrULORkmQd1fZQoaAZoCWgPQwjyDBr6JypaQJSGlFKUaBVN6ANoFkdAat4ySFGoaXV9lChoBmgJaA9DCJQw0/Yvi25AlIaUUpRoFU22AWgWR0Bq70JjUd7wdX2UKGgGaAloD0MIOjsZHKVIYkCUhpRSlGgVTegDaBZHQGs3g8bJfY11fZQoaAZoCWgPQwhP6WD9H7VjQJSGlFKUaBVN6ANoFkdAa0tPwd8zAXV9lChoBmgJaA9DCAys4/iholhAlIaUUpRoFU3oA2gWR0Brmjx5LRKIdX2UKGgGaAloD0MIGLX7VYCPYUCUhpRSlGgVTegDaBZHQGuwVHnU2DR1fZQoaAZoCWgPQwjp81FGXADIv5SGlFKUaBVN6ANoFkdAbAmW3z+WGHV9lChoBmgJaA9DCLhWe9iLB2JAlIaUUpRoFU3oA2gWR0BsHrcEeQuFdWUu"
79
+ },
80
+ "ep_success_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
83
+ },
84
+ "_n_updates": 49,
85
+ "n_steps": 1024,
86
+ "gamma": 0.99,
87
+ "gae_lambda": 0.95,
88
+ "ent_coef": 0.0,
89
+ "vf_coef": 0.0,
90
+ "max_grad_norm": 0.0,
91
+ "normalize_advantage": true,
92
+ "batch_size": 128,
93
+ "cg_max_steps": 15,
94
+ "cg_damping": 0.1,
95
+ "line_search_shrinking_factor": 0.8,
96
+ "line_search_max_iter": 10,
97
+ "target_kl": 0.01,
98
+ "n_critic_updates": 20,
99
+ "sub_sampling_factor": 1
100
+ }
trpo-LunarLanderContinuous-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecb465179e87f312b3f7aee7038c93bca3f502e2aaed4b28484643b135d131f3
3
+ size 43439
trpo-LunarLanderContinuous-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:240c183734acc96cf15c72ad86347ba0028078ffe55f4901d8ab3193299b3771
3
+ size 43134
trpo-LunarLanderContinuous-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trpo-LunarLanderContinuous-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da59a2174eca58936ad89ee58fc1c3b08b41083fb305b48bc1c6615aa056a110
3
+ size 4251