Quentin Gallouédec
Initial commit
5144545
raw
history blame
18.5 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f58ed0d2ee0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58ed0d2f70>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58ed0d4040>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58ed0d40d0>",
"_build": "<function ActorCriticPolicy._build at 0x7f58ed0d4160>",
"forward": "<function ActorCriticPolicy.forward at 0x7f58ed0d41f0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f58ed0d4280>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58ed0d4310>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f58ed0d43a0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58ed0d4430>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58ed0d44c0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58ed0d4550>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f58ed0d1bc0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
"dtype": "float32",
"_shape": [
2
],
"low": "[-1. -1.]",
"high": "[1. 1.]",
"bounded_below": "[ True True]",
"bounded_above": "[ True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1001472,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1676729264321086983,
"learning_rate": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"tensorboard_log": "runs/Swimmer-v3__trpo__1484092591__1676729260/Swimmer-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAG69k6iParG/KhOFkp74uL9AJs9fJbKfP6xfj/zv4LC/OgVJ9u5vq7/oIzzh7aCHvxosCLpb6Lg/mFlouTv7jL8Ac1jDh5KoP0R55+k2XbI/iPSsApfepz+EoXSNym+qP2DrbPGAH5I/sE/r0g0Emj9lsaLvWdmzvwDH7kCDKoq/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwiGlIwBQ5R0lFKULg=="
},
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0014719999999999178,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIak5eZAJ8YkCUhpRSlIwBbJRN6AOMAXSUR0CdGRt2s7uEdX2UKGgGaAloD0MIR8zs85gUY0CUhpRSlGgVTegDaBZHQJ0ZFTsIE8t1fZQoaAZoCWgPQwhgyOpWTwRiQJSGlFKUaBVN6ANoFkdAnSeumNzbOHV9lChoBmgJaA9DCNxifm7oYmNAlIaUUpRoFU3oA2gWR0CdJ6hYeT3ZdX2UKGgGaAloD0MIY0Si0DL1YUCUhpRSlGgVTegDaBZHQJ02sE4ecQR1fZQoaAZoCWgPQwiGOxdGesZhQJSGlFKUaBVN6ANoFkdAnTaqBVdX1nV9lChoBmgJaA9DCGWMD7OX9GJAlIaUUpRoFU3oA2gWR0CdRU4dp7C0dX2UKGgGaAloD0MI4zPZP0+gYkCUhpRSlGgVTegDaBZHQJ1FR9XtBv91fZQoaAZoCWgPQwiIhO/9jYNjQJSGlFKUaBVN6ANoFkdAnVVl+iJwbXV9lChoBmgJaA9DCE6aBkXzpGFAlIaUUpRoFU3oA2gWR0CdVV+2mYShdX2UKGgGaAloD0MILJ/lefCoY0CUhpRSlGgVTegDaBZHQJ1kXh73PAx1fZQoaAZoCWgPQwgzp8tiYtFiQJSGlFKUaBVN6ANoFkdAnWRX31zySXV9lChoBmgJaA9DCBvXv+szgGJAlIaUUpRoFU3oA2gWR0Cdc9+2E0zkdX2UKGgGaAloD0MIpMSu7W0cY0CUhpRSlGgVTegDaBZHQJ1z2XeFcpt1fZQoaAZoCWgPQwiJ7lnXaI1iQJSGlFKUaBVN6ANoFkdAnYI/Ye1a4nV9lChoBmgJaA9DCGIwf4XMymJAlIaUUpRoFU3oA2gWR0CdgjkfcN6PdX2UKGgGaAloD0MIb0p5rYS+Y0CUhpRSlGgVTegDaBZHQJ2RSiL2pQ11fZQoaAZoCWgPQwhO8bioFsZjQJSGlFKUaBVN6ANoFkdAnZFD4Hoou3V9lChoBmgJaA9DCPJCOjyEr2NAlIaUUpRoFU3oA2gWR0CdoHPppvgndX2UKGgGaAloD0MI95Fbk271YUCUhpRSlGgVTegDaBZHQJ2gbaxoqTd1fZQoaAZoCWgPQwiDa+7o//diQJSGlFKUaBVN6ANoFkdAna+7CvX9SHV9lChoBmgJaA9DCLXEymhkLmJAlIaUUpRoFU3oA2gWR0Cdr7TH80k4dX2UKGgGaAloD0MIc7hWe9iAYUCUhpRSlGgVTegDaBZHQJ2+uQV9F4N1fZQoaAZoCWgPQwhnZJC7iP1iQJSGlFKUaBVN6ANoFkdAnb6yyIHkcXV9lChoBmgJaA9DCNwPeGCAX2JAlIaUUpRoFU3oA2gWR0Cd6H+10DEFdX2UKGgGaAloD0MIt376zxrbY0CUhpRSlGgVTegDaBZHQJ3oeXzDn/11fZQoaAZoCWgPQwjoacAg6f5hQJSGlFKUaBVN6ANoFkdAnfcjtb9qDnV9lChoBmgJaA9DCLOVl/xPtWNAlIaUUpRoFU3oA2gWR0Cd9x19fCyhdX2UKGgGaAloD0MIeLMG76tOY0CUhpRSlGgVTegDaBZHQJ4GHCzkZJl1fZQoaAZoCWgPQwhMVdriGsthQJSGlFKUaBVN6ANoFkdAngYV9roGIXV9lChoBmgJaA9DCAq6vaQxz2FAlIaUUpRoFU3oA2gWR0CeFYyGSIP9dX2UKGgGaAloD0MIZoS3B6EDYkCUhpRSlGgVTegDaBZHQJ4VhkJ8fFJ1fZQoaAZoCWgPQwj76NSVT0djQJSGlFKUaBVN6ANoFkdAniPx8x9G7XV9lChoBmgJaA9DCI2ACkeQqWNAlIaUUpRoFU3oA2gWR0CeI+vKEFnqdX2UKGgGaAloD0MIJNBgU2euYkCUhpRSlGgVTegDaBZHQJ4yjL+xW1d1fZQoaAZoCWgPQwix/Pm2YEFjQJSGlFKUaBVN6ANoFkdAnjKGgOBlMHV9lChoBmgJaA9DCDHQtS8gSmNAlIaUUpRoFU3oA2gWR0CePjL6UJOWdX2UKGgGaAloD0MIUil2NA5sYUCUhpRSlGgVTegDaBZHQJ4+LLbHp8p1fZQoaAZoCWgPQwguxysQPZliQJSGlFKUaBVN6ANoFkdAnkV2a6STyXV9lChoBmgJaA9DCOuLhLacmGNAlIaUUpRoFU3oA2gWR0CeRXAqur6tdX2UKGgGaAloD0MIM1Naf0viYkCUhpRSlGgVTegDaBZHQJ5QjCoCMgl1fZQoaAZoCWgPQwhAoDNpU7BiQJSGlFKUaBVN6ANoFkdAnlCF5jYqXnV9lChoBmgJaA9DCOxLNh7sb2NAlIaUUpRoFU3oA2gWR0CeXPwaBI4EdX2UKGgGaAloD0MIC+vGuyPlYkCUhpRSlGgVTegDaBZHQJ5c9dt2s7x1fZQoaAZoCWgPQwhhp1g1iEZiQJSGlFKUaBVN6ANoFkdAnmhKDTSb6XV9lChoBmgJaA9DCH3Qs1n1cGNAlIaUUpRoFU3oA2gWR0CeaEPN3W4FdX2UKGgGaAloD0MIhbGFIIfYYkCUhpRSlGgVTegDaBZHQJ50U/6frbB1fZQoaAZoCWgPQwi2ZcBZymhhQJSGlFKUaBVN6ANoFkdAnnRNuxbB43V9lChoBmgJaA9DCDW4rS08D2NAlIaUUpRoFU3oA2gWR0CegPjX4CZGdX2UKGgGaAloD0MIGf7TDRRyY0CUhpRSlGgVTegDaBZHQJ6A8pobn5l1fZQoaAZoCWgPQwhJS+XtCOdjQJSGlFKUaBVN6ANoFkdAnqmimhufmXV9lChoBmgJaA9DCBlUG5wItmNAlIaUUpRoFU3oA2gWR0CeqZxh2GIsdX2UKGgGaAloD0MIsDcxJCcNYkCUhpRSlGgVTegDaBZHQJ65DCEYfnx1fZQoaAZoCWgPQwg4Z0Rp7yZiQJSGlFKUaBVN6ANoFkdAnrkF32VVxXV9lChoBmgJaA9DCBB1H4BU22FAlIaUUpRoFU3oA2gWR0CexwzltCRfdX2UKGgGaAloD0MIQKIJFLGCY0CUhpRSlGgVTegDaBZHQJ7HBqpLmIV1fZQoaAZoCWgPQwi0yeGTzhtiQJSGlFKUaBVN6ANoFkdAntTZzxPO6nV9lChoBmgJaA9DCH+JeOt8HmJAlIaUUpRoFU3oA2gWR0Ce1NOPeYUndX2UKGgGaAloD0MIHXV0XI2TYkCUhpRSlGgVTegDaBZHQJ7kIXBP9DR1fZQoaAZoCWgPQwhM4qyImkhiQJSGlFKUaBVN6ANoFkdAnuQbKvFFUnV9lChoBmgJaA9DCDm0yHa+xWFAlIaUUpRoFU3oA2gWR0Ce84nBtUGWdX2UKGgGaAloD0MIQPflzPaVYUCUhpRSlGgVTegDaBZHQJ7zg35vcah1fZQoaAZoCWgPQwiAZaVJqZ9jQJSGlFKUaBVN6ANoFkdAnwJe85CF9XV9lChoBmgJaA9DCIqUZvO4aWFAlIaUUpRoFU3oA2gWR0CfAliz9jwydX2UKGgGaAloD0MIF9S3zOlGY0CUhpRSlGgVTegDaBZHQJ8QzpyIYWN1fZQoaAZoCWgPQwjlfLH34s9jQJSGlFKUaBVN6ANoFkdAnxDIXTEzf3V9lChoBmgJaA9DCGed8X1xHmNAlIaUUpRoFU3oA2gWR0CfHtx6OYICdX2UKGgGaAloD0MIZ0gVxSugY0CUhpRSlGgVTegDaBZHQJ8e1jTa0yB1fZQoaAZoCWgPQwjVkSOdgRBiQJSGlFKUaBVN6ANoFkdAny4OGXXyy3V9lChoBmgJaA9DCFQAjGdQkWNAlIaUUpRoFU3oA2gWR0CfLgfcer+6dX2UKGgGaAloD0MIvXK9baa4YUCUhpRSlGgVTegDaBZHQJ89sBkqc3F1fZQoaAZoCWgPQwg6PlqcsYBhQJSGlFKUaBVN6ANoFkdAnz2p31SOznV9lChoBmgJaA9DCJBPyM7bk2FAlIaUUpRoFU3oA2gWR0CfTAPkJa7mdX2UKGgGaAloD0MI/KcbKHC6YkCUhpRSlGgVTegDaBZHQJ9L/Z7HAAR1fZQoaAZoCWgPQwikF7X71bVhQJSGlFKUaBVN6ANoFkdAn3UH6dlNDnV9lChoBmgJaA9DCF99PPTdlWNAlIaUUpRoFU3oA2gWR0CfdQGoJiRXdX2UKGgGaAloD0MIndhD+1iaY0CUhpRSlGgVTegDaBZHQJ+B7noxHoZ1fZQoaAZoCWgPQwiNQpJZPdtjQJSGlFKUaBVN6ANoFkdAn4HoNqgyunV9lChoBmgJaA9DCP3AVZ7AmGNAlIaUUpRoFU3oA2gWR0CfkNl3hXKbdX2UKGgGaAloD0MI3zXoS+9IYkCUhpRSlGgVTegDaBZHQJ+Q0zl90A91fZQoaAZoCWgPQwh3E3zT9NRjQJSGlFKUaBVN6ANoFkdAn5/MsDnvD3V9lChoBmgJaA9DCP3ZjxQRYGJAlIaUUpRoFU3oA2gWR0Cfn8ZssQNDdX2UKGgGaAloD0MI0ENtG0ZQYkCUhpRSlGgVTegDaBZHQJ+uyFUQ0411fZQoaAZoCWgPQwg2PL1SFotjQJSGlFKUaBVN6ANoFkdAn67CFXaJynV9lChoBmgJaA9DCLzmVZ1V4GFAlIaUUpRoFU3oA2gWR0CfvIt/FzdUdX2UKGgGaAloD0MI0m2JXPD/YUCUhpRSlGgVTegDaBZHQJ+8hT3qRlp1fZQoaAZoCWgPQwgpWU5C6QRiQJSGlFKUaBVN6ANoFkdAn8swZbY9PnV9lChoBmgJaA9DCJtz8ExoJ2NAlIaUUpRoFU3oA2gWR0CfyyolD4QCdX2UKGgGaAloD0MIQnqKHKJ2Y0CUhpRSlGgVTegDaBZHQJ/ZQJ8fFJh1fZQoaAZoCWgPQwhoeLMG7wViQJSGlFKUaBVN6ANoFkdAn9k6ZtvXLHV9lChoBmgJaA9DCJJaKJmcXmNAlIaUUpRoFU3oA2gWR0Cf5gqrR0EHdX2UKGgGaAloD0MInWaBdocyY0CUhpRSlGgVTegDaBZHQJ/mBGqgh8p1fZQoaAZoCWgPQwjLEwg7RatjQJSGlFKUaBVN6ANoFkdAn/JwtFrmAHV9lChoBmgJaA9DCCh/946auWJAlIaUUpRoFU3oA2gWR0Cf8mp3HJcPdX2UKGgGaAloD0MIkDF3LaE2YkCUhpRSlGgVTegDaBZHQKAAzcqOLix1fZQoaAZoCWgPQwhqhH6m3qdiQJSGlFKUaBVN6ANoFkdAoADKqABkqnV9lChoBmgJaA9DCD8djxmoImRAlIaUUpRoFU3oA2gWR0CgCDt4zJp4dX2UKGgGaAloD0MIeJj2zX1RYkCUhpRSlGgVTegDaBZHQKAIOFj/dZd1fZQoaAZoCWgPQwhq+YGrPOdjQJSGlFKUaBVN6ANoFkdAoBAUhPj4pXV9lChoBmgJaA9DCLd6TnpfsGJAlIaUUpRoFU3oA2gWR0CgEBFnZkCndWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 489,
"n_steps": 1024,
"gamma": 0.9999,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.0,
"max_grad_norm": 0.0,
"normalize_advantage": true,
"batch_size": 128,
"cg_max_steps": 25,
"cg_damping": 0.1,
"line_search_shrinking_factor": 0.8,
"line_search_max_iter": 10,
"target_kl": 0.01,
"n_critic_updates": 20,
"sub_sampling_factor": 1
}