Quentin Gallouédec commited on
Commit
ca4192a
1 Parent(s): e6eab3d

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Swimmer-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TRPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Swimmer-v3
16
+ type: Swimmer-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 131.86 +/- 3.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TRPO** Agent playing **Swimmer-v3**
25
+ This is a trained model of a **TRPO** agent playing **Swimmer-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo trpo --env Swimmer-v3 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo trpo --env Swimmer-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo trpo --env Swimmer-v3 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo trpo --env Swimmer-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo trpo --env Swimmer-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo trpo --env Swimmer-v3 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('cg_damping', 0.1),
67
+ ('cg_max_steps', 25),
68
+ ('gae_lambda', 0.95),
69
+ ('gamma', 0.9999),
70
+ ('learning_rate', 0.001),
71
+ ('n_critic_updates', 20),
72
+ ('n_envs', 2),
73
+ ('n_steps', 1024),
74
+ ('n_timesteps', 1000000.0),
75
+ ('normalize', True),
76
+ ('policy', 'MlpPolicy'),
77
+ ('sub_sampling_factor', 1),
78
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
79
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - trpo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Swimmer-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3893167513
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Swimmer-v3__trpo__3893167513__1676722932
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - cg_damping
5
+ - 0.1
6
+ - - cg_max_steps
7
+ - 25
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.9999
12
+ - - learning_rate
13
+ - 0.001
14
+ - - n_critic_updates
15
+ - 20
16
+ - - n_envs
17
+ - 2
18
+ - - n_steps
19
+ - 1024
20
+ - - n_timesteps
21
+ - 1000000.0
22
+ - - normalize
23
+ - true
24
+ - - policy
25
+ - MlpPolicy
26
+ - - sub_sampling_factor
27
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b0651db18ecd641c7d0bf0e0cc29b9bfcc3d3b2ce59a2ad20708dbd60fbcd4b
3
+ size 1232203
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 131.86188529999998, "std_reward": 3.08619041903237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T16:14:41.758071"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f290d3b1e4ed9ef84bd979c88e5486d399f96223b4ae4effdbdf9c88ef73c5e2
3
+ size 42481
trpo-Swimmer-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb81a6829f278dfccddb183de8d4f218eaa32bdb435794d46a3239404fadb43c
3
+ size 106519
trpo-Swimmer-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
trpo-Swimmer-v3/data ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d88952ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d88952f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d88954040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d889540d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8d88954160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8d889541f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8d88954280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d88954310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8d889543a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d88954430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d889544c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d88954550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8d88955080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float64",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 2
43
+ ],
44
+ "low": "[-1. -1.]",
45
+ "high": "[1. 1.]",
46
+ "bounded_below": "[ True True]",
47
+ "bounded_above": "[ True True]",
48
+ "_np_random": "RandomState(MT19937)"
49
+ },
50
+ "n_envs": 1,
51
+ "num_timesteps": 1001472,
52
+ "_total_timesteps": 1000000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": 0,
55
+ "action_noise": null,
56
+ "start_time": 1676722936736362974,
57
+ "learning_rate": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
60
+ },
61
+ "tensorboard_log": "runs/Swimmer-v3__trpo__3893167513__1676722932/Swimmer-v3",
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
65
+ },
66
+ "_last_obs": null,
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAADrgKOidRbI/KNv33PQdkT8QYTsD5u2LvxABtTDMyaw/CKawXkpMoj+4MXkrHwqkP9DLZyaVS4k/UAHUblpmt78o1Y8n3UCdv+wj9r9cp6k/ICtbkaLBcD8QCnVZP1u4P1gOiPDJvra/5IkvdJwWpz+gHfoICFBrvzB90dozvn8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwiGlIwBQ5R0lFKULg=="
74
+ },
75
+ "_episode_num": 0,
76
+ "use_sde": false,
77
+ "sde_sample_freq": -1,
78
+ "_current_progress_remaining": -0.0014719999999999178,
79
+ "ep_info_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHhmrzf8SYECUhpRSlIwBbJRN6AOMAXSUR0CdAuhEjPfLdX2UKGgGaAloD0MIaJJYUu6JX0CUhpRSlGgVTegDaBZHQJ0C4eMhouh1fZQoaAZoCWgPQwgEHEKVmlJgQJSGlFKUaBVN6ANoFkdAnRJ1yFPBSHV9lChoBmgJaA9DCIGxvoFJBmFAlIaUUpRoFU3oA2gWR0CdEm9qUNaydX2UKGgGaAloD0MIQiYZOQumX0CUhpRSlGgVTegDaBZHQJ0ih6w+t8x1fZQoaAZoCWgPQwhXlX1XBHFfQJSGlFKUaBVN6ANoFkdAnSKBTKkl/3V9lChoBmgJaA9DCMnMBS4PumBAlIaUUpRoFU3oA2gWR0CdMXTF2mpEdX2UKGgGaAloD0MIV5QSglWbX0CUhpRSlGgVTegDaBZHQJ0xbmOlwcZ1fZQoaAZoCWgPQwhc6EoEKjRgQJSGlFKUaBVN6ANoFkdAnUJGOuJUHnV9lChoBmgJaA9DCIwrLo5KT2BAlIaUUpRoFU3oA2gWR0CdQj/fwZwXdX2UKGgGaAloD0MInwPLETLPX0CUhpRSlGgVTegDaBZHQJ1Q2Lgn+hp1fZQoaAZoCWgPQwhEF9S3TGBgQJSGlFKUaBVN6ANoFkdAnVDSWNWEK3V9lChoBmgJaA9DCEXzABb5s19AlIaUUpRoFU3oA2gWR0CdXwTy8SPEdX2UKGgGaAloD0MIvf4kPncLYECUhpRSlGgVTegDaBZHQJ1e/ulXRw91fZQoaAZoCWgPQwhc5nRZTCJfQJSGlFKUaBVN6ANoFkdAnW0WShakh3V9lChoBmgJaA9DCPfnoiHjWWBAlIaUUpRoFU3oA2gWR0CdbQ/r0J4TdX2UKGgGaAloD0MIvvVhvdGjYECUhpRSlGgVTegDaBZHQJ17Zk3CKrJ1fZQoaAZoCWgPQwjvjLYqCd5gQJSGlFKUaBVN6ANoFkdAnXtf8IiTuHV9lChoBmgJaA9DCAGG5c+3ZV9AlIaUUpRoFU3oA2gWR0CdiuoVEd/8dX2UKGgGaAloD0MIi3CTUWU0YECUhpRSlGgVTegDaBZHQJ2K47aIval1fZQoaAZoCWgPQwgracU3FFpgQJSGlFKUaBVN6ANoFkdAnZoMWj4593V9lChoBmgJaA9DCFTJAFBF4GBAlIaUUpRoFU3oA2gWR0CdmgYCyQgcdX2UKGgGaAloD0MID+7O2u1yYECUhpRSlGgVTegDaBZHQJ2o2lCTlkp1fZQoaAZoCWgPQwjyYfay7c1fQJSGlFKUaBVN6ANoFkdAnajT+NtIkXV9lChoBmgJaA9DCIYb8PlhXWBAlIaUUpRoFU3oA2gWR0Cd0cNucc2jdX2UKGgGaAloD0MIEw1S8BTDX0CUhpRSlGgVTegDaBZHQJ3RvRPXTVl1fZQoaAZoCWgPQwgDzefc7ZFfQJSGlFKUaBVN6ANoFkdAnd6Zx7zClHV9lChoBmgJaA9DCOmBj8EKiWBAlIaUUpRoFU3oA2gWR0Cd3pNmlImPdX2UKGgGaAloD0MI6kKs/oglYECUhpRSlGgVTegDaBZHQJ3uJsGgSOB1fZQoaAZoCWgPQwhe86rOalBgQJSGlFKUaBVN6ANoFkdAne4gZbY9PnV9lChoBmgJaA9DCMwHBDoTXGBAlIaUUpRoFU3oA2gWR0Cd/WGTs6aLdX2UKGgGaAloD0MICrsoeuCvX0CUhpRSlGgVTegDaBZHQJ39WzXz19R1fZQoaAZoCWgPQwjZBYNrbuRgQJSGlFKUaBVN6ANoFkdAngvZWeYlY3V9lChoBmgJaA9DCCXK3lLO1l9AlIaUUpRoFU3oA2gWR0CeC9L6UJOWdX2UKGgGaAloD0MIDk+vlOUPYECUhpRSlGgVTegDaBZHQJ4aJ/OMVDd1fZQoaAZoCWgPQwhjf9k9+SpgQJSGlFKUaBVN6ANoFkdAnhohkd3jdnV9lChoBmgJaA9DCHHK3HwjnWBAlIaUUpRoFU3oA2gWR0CeKSedkJ8fdX2UKGgGaAloD0MIi4hi8gbIX0CUhpRSlGgVTegDaBZHQJ4pIUM5OrR1fZQoaAZoCWgPQwjvHMpQFf1gQJSGlFKUaBVN6ANoFkdAnjMkpZwGW3V9lChoBmgJaA9DCH8w8Nz7FWFAlIaUUpRoFU3oA2gWR0CeMx4/NZ/1dX2UKGgGaAloD0MIg/xs5Lr+YECUhpRSlGgVTegDaBZHQJ5CDpOerdZ1fZQoaAZoCWgPQwhsX0Av3KlfQJSGlFKUaBVN6ANoFkdAnkIIMrmQsHV9lChoBmgJaA9DCLrdy31y9mBAlIaUUpRoFU3oA2gWR0CeUbGFzuF6dX2UKGgGaAloD0MI6WD9n8OYX0CUhpRSlGgVTegDaBZHQJ5RqyPdVNp1fZQoaAZoCWgPQwg+IxEaQeBgQJSGlFKUaBVN6ANoFkdAnmGEUfxMFnV9lChoBmgJaA9DCJGYoIZvyGBAlIaUUpRoFU3oA2gWR0CeYX3225QQdX2UKGgGaAloD0MI19zR//KCYECUhpRSlGgVTegDaBZHQJ5wNEXtSht1fZQoaAZoCWgPQwik374OnJZgQJSGlFKUaBVN6ANoFkdAnnAt5t3wC3V9lChoBmgJaA9DCFdgyOpWiV9AlIaUUpRoFU3oA2gWR0Cef4ScslLOdX2UKGgGaAloD0MIVcITev0RYECUhpRSlGgVTegDaBZHQJ5/fjtG/et1fZQoaAZoCWgPQwiRK/UsCIxgQJSGlFKUaBVN6ANoFkdAnqhieumrKnV9lChoBmgJaA9DCGztfaoKO19AlIaUUpRoFU3oA2gWR0CeqFweNkvsdX2UKGgGaAloD0MIvTlcqz1HX0CUhpRSlGgVTegDaBZHQJ62HI1cdHV1fZQoaAZoCWgPQwigNT/+UpVgQJSGlFKUaBVN6ANoFkdAnrYWM85jpnV9lChoBmgJaA9DCMrhk04kJF9AlIaUUpRoFU3oA2gWR0CewTeK8+RpdX2UKGgGaAloD0MIp3Sw/s/iYECUhpRSlGgVTegDaBZHQJ7BMSuhbnp1fZQoaAZoCWgPQwgjMUEN38BfQJSGlFKUaBVN6ANoFkdAnsy4S+QEIXV9lChoBmgJaA9DCJNX5xiQN19AlIaUUpRoFU3oA2gWR0CezLHwgDA8dX2UKGgGaAloD0MIpn7eVCRvYECUhpRSlGgVTegDaBZHQJ7Zp73PAwh1fZQoaAZoCWgPQwgQQGoTpzVgQJSGlFKUaBVN6ANoFkdAntmhXnyNGXV9lChoBmgJaA9DCHLfap2402BAlIaUUpRoFU3oA2gWR0Ce5p557gKndX2UKGgGaAloD0MI+nq+Zrm8X0CUhpRSlGgVTegDaBZHQJ7mmBf8dgh1fZQoaAZoCWgPQwh0eXO41hBgQJSGlFKUaBVN6ANoFkdAnvGCBbwBo3V9lChoBmgJaA9DCAPS/gdYq2BAlIaUUpRoFU3oA2gWR0Ce8XuqWC2+dX2UKGgGaAloD0MIYcPTK2WCX0CUhpRSlGgVTegDaBZHQJ78cj7hvR91fZQoaAZoCWgPQwgROBJosKpgQJSGlFKUaBVN6ANoFkdAnvxr4N7SiXV9lChoBmgJaA9DCAq9/iQ+nF9AlIaUUpRoFU3oA2gWR0CfCfnr6ciGdX2UKGgGaAloD0MI8MSsF0PMX0CUhpRSlGgVTegDaBZHQJ8J84p+c6N1fZQoaAZoCWgPQwjRsu4fiwFgQJSGlFKUaBVN6ANoFkdAnxbjafzz3HV9lChoBmgJaA9DCDkJpS+EtmBAlIaUUpRoFU3oA2gWR0CfFt0MPSUkdX2UKGgGaAloD0MIoz1eSAc1YECUhpRSlGgVTegDaBZHQJ8lo8lolD51fZQoaAZoCWgPQwhjYYicPjlgQJSGlFKUaBVN6ANoFkdAnyWdaUzKtHV9lChoBmgJaA9DCBlUG5yIjWBAlIaUUpRoFU3oA2gWR0CfNayuZCv6dX2UKGgGaAloD0MI8bvplh02X0CUhpRSlGgVTegDaBZHQJ81plI3BHl1fZQoaAZoCWgPQwh7aB8r+MtfQJSGlFKUaBVN6ANoFkdAn1z4h2W6b3V9lChoBmgJaA9DCB3HD5XGPGBAlIaUUpRoFU3oA2gWR0CfXPIjnmq6dX2UKGgGaAloD0MIMxe4PNYPYECUhpRSlGgVTegDaBZHQJ9sTNliBoV1fZQoaAZoCWgPQwgTZARUuLFgQJSGlFKUaBVN6ANoFkdAn2xGcnVoYnV9lChoBmgJaA9DCFdaRuo9RmBAlIaUUpRoFU3oA2gWR0CfesUT+NtJdX2UKGgGaAloD0MIFR+fkJ2pX0CUhpRSlGgVTegDaBZHQJ96vrnkkrx1fZQoaAZoCWgPQwjvcDs0rCZgQJSGlFKUaBVN6ANoFkdAn4jTLjghr3V9lChoBmgJaA9DCNpZ9E4Fo2BAlIaUUpRoFU3oA2gWR0CfiMzTnaFmdX2UKGgGaAloD0MIzTrj++JpX0CUhpRSlGgVTegDaBZHQJ+Wq/RE4Nt1fZQoaAZoCWgPQwhQcodNZGpfQJSGlFKUaBVN6ANoFkdAn5alkYoAn3V9lChoBmgJaA9DCEpCIm3jJV9AlIaUUpRoFU3oA2gWR0Cfpv/echC/dX2UKGgGaAloD0MIt+ulKQKTYECUhpRSlGgVTegDaBZHQJ+m+YSg5BF1fZQoaAZoCWgPQwi/Yg0XuTVfQJSGlFKUaBVN6ANoFkdAn7aXhfjS5XV9lChoBmgJaA9DCFsjgnFwS19AlIaUUpRoFU3oA2gWR0CftpEnb7CSdX2UKGgGaAloD0MIQu4iTNG9YECUhpRSlGgVTegDaBZHQJ/EtqsU7CB1fZQoaAZoCWgPQwgYldQJaENgQJSGlFKUaBVN6ANoFkdAn8SwR9PUKHV9lChoBmgJaA9DCPerAN9t7l9AlIaUUpRoFU3oA2gWR0Cf0oXwsoUjdX2UKGgGaAloD0MIozuInSlKYECUhpRSlGgVTegDaBZHQJ/Sf5hz/6x1fZQoaAZoCWgPQwgwgzEi0VBgQJSGlFKUaBVN6ANoFkdAn+C+ZkTYd3V9lChoBmgJaA9DCA6ki02rdWBAlIaUUpRoFU3oA2gWR0Cf4LgA6uGLdX2UKGgGaAloD0MIkxtF1hpRYECUhpRSlGgVTegDaBZHQJ/wLCwbEP11fZQoaAZoCWgPQwh+qgoNRFdgQJSGlFKUaBVN6ANoFkdAn/AlyBClanV9lChoBmgJaA9DCPG6fsFuamBAlIaUUpRoFU3oA2gWR0CgACjHGS6ldX2UKGgGaAloD0MIWpwxzAmtX0CUhpRSlGgVTegDaBZHQKAAJZX+2mZ1fZQoaAZoCWgPQwhINez3RGZgQJSGlFKUaBVN6ANoFkdAoAgVQ66renV9lChoBmgJaA9DCK+ZfLNNrmBAlIaUUpRoFU3oA2gWR0CgCBIWgvlEdWUu"
82
+ },
83
+ "ep_success_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
86
+ },
87
+ "_n_updates": 489,
88
+ "n_steps": 1024,
89
+ "gamma": 0.9999,
90
+ "gae_lambda": 0.95,
91
+ "ent_coef": 0.0,
92
+ "vf_coef": 0.0,
93
+ "max_grad_norm": 0.0,
94
+ "normalize_advantage": true,
95
+ "batch_size": 128,
96
+ "cg_max_steps": 25,
97
+ "cg_damping": 0.1,
98
+ "line_search_shrinking_factor": 0.8,
99
+ "line_search_max_iter": 10,
100
+ "target_kl": 0.01,
101
+ "n_critic_updates": 20,
102
+ "sub_sampling_factor": 1
103
+ }
trpo-Swimmer-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15aa092c0aa00cde6ab5bfdf4a7c89341c7247a71c798d18f4ad7943e5667d94
3
+ size 43439
trpo-Swimmer-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d40c4bcb2be7d1709112eb6731feca6dc6a448de71522d3e0171cdc97de5d5d4
3
+ size 43134
trpo-Swimmer-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trpo-Swimmer-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95515377b1243c44862bccd84f42bd7a055b5845eb64d7d5beb35413749bd2ea
3
+ size 4379