Quentin Gallouédec
commited on
Commit
•
660a0ca
1
Parent(s):
339dd7d
Initial commit
Browse files- .gitattributes +1 -0
- README.md +79 -0
- args.yml +83 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-Walker2d-v3.zip +3 -0
- trpo-Walker2d-v3/_stable_baselines3_version +1 -0
- trpo-Walker2d-v3/data +103 -0
- trpo-Walker2d-v3/policy.optimizer.pth +3 -0
- trpo-Walker2d-v3/policy.pth +3 -0
- trpo-Walker2d-v3/pytorch_variables.pth +3 -0
- trpo-Walker2d-v3/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2d-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Walker2d-v3
|
16 |
+
type: Walker2d-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 4943.61 +/- 980.41
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TRPO** Agent playing **Walker2d-v3**
|
25 |
+
This is a trained model of a **TRPO** agent playing **Walker2d-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo trpo --env Walker2d-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo trpo --env Walker2d-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo trpo --env Walker2d-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo trpo --env Walker2d-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo trpo --env Walker2d-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo trpo --env Walker2d-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('cg_damping', 0.1),
|
67 |
+
('cg_max_steps', 25),
|
68 |
+
('gae_lambda', 0.95),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('learning_rate', 0.001),
|
71 |
+
('n_critic_updates', 20),
|
72 |
+
('n_envs', 2),
|
73 |
+
('n_steps', 1024),
|
74 |
+
('n_timesteps', 1000000.0),
|
75 |
+
('normalize', True),
|
76 |
+
('policy', 'MlpPolicy'),
|
77 |
+
('sub_sampling_factor', 1),
|
78 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
79 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Walker2d-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 2777209397
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/Walker2d-v3__trpo__2777209397__1676371613
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - cg_damping
|
5 |
+
- 0.1
|
6 |
+
- - cg_max_steps
|
7 |
+
- 25
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- 0.001
|
14 |
+
- - n_critic_updates
|
15 |
+
- 20
|
16 |
+
- - n_envs
|
17 |
+
- 2
|
18 |
+
- - n_steps
|
19 |
+
- 1024
|
20 |
+
- - n_timesteps
|
21 |
+
- 1000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - sub_sampling_factor
|
27 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b28197933353803e83ccc3d42a6742fd415799bafcf564e2ffe4c1024891f47f
|
3 |
+
size 1294826
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 4943.6106464, "std_reward": 980.4083419016871, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T18:10:33.182274"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c13f2f9e37caf8dbb7c4fd9310f7f52bf1feb3eccedc7e3e84de3703948436e8
|
3 |
+
size 80426
|
trpo-Walker2d-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db9326b60cc9b0e4be277c0ec2b6337058ac2eecbe1b7233e9730651f3b1fafd
|
3 |
+
size 117355
|
trpo-Walker2d-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
trpo-Walker2d-v3/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1691293ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1691293f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1691295040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f16912950d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1691295160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f16912951f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1691295280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1691295310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f16912953a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1691295430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f16912954c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1691295550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f16912946c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVgQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWiAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSxGFlIwBQ5R0lFKUjARoaWdolGgSKJaIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLEYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsRhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float64",
|
28 |
+
"_shape": [
|
29 |
+
17
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVNgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
6
|
43 |
+
],
|
44 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
45 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
46 |
+
"bounded_below": "[ True True True True True True]",
|
47 |
+
"bounded_above": "[ True True True True True True]",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 1001472,
|
52 |
+
"_total_timesteps": 1000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1676371616060511044,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
60 |
+
},
|
61 |
+
"tensorboard_log": "runs/Walker2d-v3__trpo__2777209397__1676371613/Walker2d-v3",
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVhQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAQAAAAAAAJEpsYpS7/M/ACD/ek28Hz8tMlZHR3dwv1TUJDi8b2q/NR3LpSBocD8uwR85Y3VYvxDa/xgEfTW/dPyE0BdGUT9jwkYPwFBxPwCJzHJxFA6/fRvoPwN3cT/4wLf5kD5jv1rwKRSll2E/mXMy5WP8cj+YF7rVDARAvyA0WBotx0y/NvZyjZCiYz/mQ1p1IPnzPwSdDf/L31c/Uld+VzyLYj8gIPPl4X9Av0DnU9zCbxG/cGEi0E5CXL9+/Lew105xv8VRGkVLjHA/Uy2vIBnIcT+Xj6ZkNlJvv1vbkdUIUHS/vCpaZlHEZD/FHgbMNz1nv6A5dB+SQ0u/4Ib3386fTj+wUTT0iZVKP7ZcLFVmQ2m/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSxGGlIwBQ5R0lFKULg=="
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr83GSnj/sECUhpRSlIwBbJRNZAOMAXSUR0CcOoiV0Lc9dX2UKGgGaAloD0MIi4o4nayds0CUhpRSlGgVTegDaBZHQJxDrXUYsNF1fZQoaAZoCWgPQwgmNbQB2OhcQJSGlFKUaBVLRGgWR0CcRF+dK/VRdX2UKGgGaAloD0MI/ijqzMVKq0CUhpRSlGgVTdoCaBZHQJxFtzwMH8l1fZQoaAZoCWgPQwi4lV6b7U2vQJSGlFKUaBVNJwNoFkdAnFBPTPSlWXV9lChoBmgJaA9DCHrkDwaWtLNAlIaUUpRoFU3oA2gWR0CcU6AKv3ajdX2UKGgGaAloD0MIU7DG2TTUnUCUhpRSlGgVTaEBaBZHQJxUl1s+FDh1fZQoaAZoCWgPQwjXhLTGVFyzQJSGlFKUaBVN6ANoFkdAnHs1pXZGrnV9lChoBmgJaA9DCPaaHhSc17FAlIaUUpRoFU2kA2gWR0Cce3YPoV2zdX2UKGgGaAloD0MIqBjnb5IclkCUhpRSlGgVTVcBaBZHQJx++6kIomZ1fZQoaAZoCWgPQwhZ3lUPmLGLQJSGlFKUaBVL72gWR0CchRK5TZQIdX2UKGgGaAloD0MIjC0EOVB5s0CUhpRSlGgVTegDaBZHQJyJEM/hVEN1fZQoaAZoCWgPQwiySX7EX7ilQJSGlFKUaBVNQAJoFkdAnIri+6Ae73V9lChoBmgJaA9DCCamC7FCaKtAlIaUUpRoFU28AmgWR0CclZ3DvVmSdX2UKGgGaAloD0MITioaa98EtECUhpRSlGgVTeYDaBZHQJyWzYL9deJ1fZQoaAZoCWgPQwjOiNLeWOqwQJSGlFKUaBVNXwNoFkdAnKHzz7MxGnV9lChoBmgJaA9DCK1QpPsJB7RAlIaUUpRoFU3oA2gWR0CcpJAiV0LddX2UKGgGaAloD0MIGVdcHG2Gs0CUhpRSlGgVTegDaBZHQJyv4JNTLnt1fZQoaAZoCWgPQwj+RjtuJBqyQJSGlFKUaBVNngNoFkdAnLGt0mtyP3V9lChoBmgJaA9DCL0bCwpj6KlAlIaUUpRoFU2jAmgWR0CctroqkM1CdX2UKGgGaAloD0MIec4WELY/tECUhpRSlGgVTegDaBZHQJy/e8tf5UN1fZQoaAZoCWgPQwhiFASPy8azQJSGlFKUaBVN6ANoFkdAnMRb3fyf+XV9lChoBmgJaA9DCMAlAP+MkaZAlIaUUpRoFU1dAmgWR0CcxWuHvc8DdX2UKGgGaAloD0MIZwqd1+Btq0CUhpRSlGgVTcYCaBZHQJzPAW8AaNx1fZQoaAZoCWgPQwgAPKJClRKAQJSGlFKUaBVLpWgWR0Cc0Kwwj+rEdX2UKGgGaAloD0MIUDV6NSzfs0CUhpRSlGgVTegDaBZHQJzTBO58Sf11fZQoaAZoCWgPQwhvn1Vm4iS0QJSGlFKUaBVN6ANoFkdAnN4H+IdlunV9lChoBmgJaA9DCMPxfAawLrRAlIaUUpRoFU3oA2gWR0Cc4FhW5paidX2UKGgGaAloD0MIXFSLiMohoUCUhpRSlGgVTekBaBZHQJzonAWSEDh1fZQoaAZoCWgPQwhGYRdFS/KzQJSGlFKUaBVN6ANoFkdAnOtgVO9FnnV9lChoBmgJaA9DCLCRJAjX6ZdAlIaUUpRoFU1sAWgWR0Cc7DnndO6/dX2UKGgGaAloD0MIyY6NQAydkkCUhpRSlGgVTSkBaBZHQJzuZyFPBSF1fZQoaAZoCWgPQwiGdk6zAOp9QJSGlFKUaBVLn2gWR0Cc84/Y8Md+dX2UKGgGaAloD0MIt0QuOPvWp0CUhpRSlGgVTXACaBZHQJz2FkQPI4l1fZQoaAZoCWgPQwhJKlPMNfizQJSGlFKUaBVN6ANoFkdAnP2D0lJHy3V9lChoBmgJaA9DCNLgtrb4k7NAlIaUUpRoFU3oA2gWR0CdA52Dg62fdX2UKGgGaAloD0MIEtvdA6RwlECUhpRSlGgVTUUBaBZHQJ0G1pfx+a11fZQoaAZoCWgPQwhqGD4iHsmzQJSGlFKUaBVN6ANoFkdAnQsFU6xPf3V9lChoBmgJaA9DCH+IDRbyybNAlIaUUpRoFU3oA2gWR0CdFHmixmkFdX2UKGgGaAloD0MI7dgIxKtZjUCUhpRSlGgVS/hoFkdAnRcAPuogm3V9lChoBmgJaA9DCEdUqG5ucnBAlIaUUpRoFUtraBZHQJ03F6LOzIF1fZQoaAZoCWgPQwg429yYOj+0QJSGlFKUaBVN6ANoFkdAnTfEaIeo1nV9lChoBmgJaA9DCGADIsQJtLNAlIaUUpRoFU3oA2gWR0CdROOEug6EdX2UKGgGaAloD0MIx0j2CAHYs0CUhpRSlGgVTegDaBZHQJ1FjiR4hU11fZQoaAZoCWgPQwgCf/j5L+yQQJSGlFKUaBVNGgFoFkdAnUwbFn7HhnV9lChoBmgJaA9DCIz2eCEh8rJAlIaUUpRoFU3oA2gWR0CdUsd5Y5ktdX2UKGgGaAloD0MIOfHVjlIOtECUhpRSlGgVTegDaBZHQJ1aCIcinpB1fZQoaAZoCWgPQwgwnGuYhVm0QJSGlFKUaBVN6ANoFkdAnWCGCROk+HV9lChoBmgJaA9DCJbs2AgY0rNAlIaUUpRoFU3oA2gWR0CdZ9oDPnjidX2UKGgGaAloD0MIzT/6Jv2lnUCUhpRSlGgVTasBaBZHQJ1oqcvugHx1fZQoaAZoCWgPQwjfpGlQyBK0QJSGlFKUaBVN6ANoFkdAnXWmaUiY9nV9lChoBmgJaA9DCNlcNc8NjLNAlIaUUpRoFU3oA2gWR0Cddmq+ajN7dX2UKGgGaAloD0MIg79fzJ4etECUhpRSlGgVTegDaBZHQJ2DR/ZuhsZ1fZQoaAZoCWgPQwiTHLCrhcqzQJSGlFKUaBVN6ANoFkdAnYQP5YYBNnV9lChoBmgJaA9DCPQyiuVWCbRAlIaUUpRoFU3oA2gWR0CdkON5MURGdX2UKGgGaAloD0MIkwILYFYotECUhpRSlGgVTegDaBZHQJ2Rs+xGDth1fZQoaAZoCWgPQwh0CYfewqaRQJSGlFKUaBVNKAFoFkdAnZS7amGdqnV9lChoBmgJaA9DCCy5isUz17NAlIaUUpRoFU3oA2gWR0Cdnpx9G7SRdX2UKGgGaAloD0MISu1FtLm9s0CUhpRSlGgVTegDaBZHQJ2idNcnmaJ1fZQoaAZoCWgPQwjovpzZ+rKzQJSGlFKUaBVN6ANoFkdAnayHck+otXV9lChoBmgJaA9DCLOVl/xTCLRAlIaUUpRoFU3oA2gWR0CdsF+evpyIdX2UKGgGaAloD0MIo87cQ+qDqUCUhpRSlGgVTacCaBZHQJ2zg7CBPKx1fZQoaAZoCWgPQwhwXpz4ejWxQJSGlFKUaBVNawNoFkdAnbzufdyksXV9lChoBmgJaA9DCArWOJvm1bNAlIaUUpRoFU3oA2gWR0CdwTzq8lHCdX2UKGgGaAloD0MINh/XhhZjs0CUhpRSlGgVTegDaBZHQJ3KiLzf7791fZQoaAZoCWgPQwg4hCo1x+2zQJSGlFKUaBVN6ANoFkdAnc7I/NZ/1HV9lChoBmgJaA9DCGB0eXNMO7RAlIaUUpRoFU3oA2gWR0Cd1+0g8r7PdX2UKGgGaAloD0MItcL0vaIotECUhpRSlGgVTegDaBZHQJ3cMHQhOgx1fZQoaAZoCWgPQwg4+MJkBhu0QJSGlFKUaBVN6ANoFkdAngKggHNX5nV9lChoBmgJaA9DCDV+4ZWELLRAlIaUUpRoFU3oA2gWR0CeBurWy1NQdX2UKGgGaAloD0MIKcsQx/YwtECUhpRSlGgVTegDaBZHQJ4QdUipvP11fZQoaAZoCWgPQwi3tBoS+8azQJSGlFKUaBVN6ANoFkdAnhS3eenQ6nV9lChoBmgJaA9DCLDllevB5bNAlIaUUpRoFU3oA2gWR0CeHfc8TzundX2UKGgGaAloD0MI8nfvqAk7tECUhpRSlGgVTegDaBZHQJ4iSXF98Z11fZQoaAZoCWgPQwguOIO/Fye0QJSGlFKUaBVN6ANoFkdAnitnv6TGHnV9lChoBmgJaA9DCKFNDp9U7aZAlIaUUpRoFU1oAmgWR0CeK9uYhMakdX2UKGgGaAloD0MIwHebN855sUCUhpRSlGgVTWwDaBZHQJ40KQiiZfF1fZQoaAZoCWgPQwgeboeGmRWzQJSGlFKUaBVN6ANoFkdAnjl60pmVaHV9lChoBmgJaA9DCOJ30y2bPo5AlIaUUpRoFU0jAWgWR0CeOqqfe1rqdX2UKGgGaAloD0MIQ5CDEqaenUCUhpRSlGgVTasBaBZHQJ49zvb48EF1fZQoaAZoCWgPQwhx6C0ePuegQJSGlFKUaBVN2wFoFkdAnj+ONDMNdHV9lChoBmgJaA9DCOTZ5VunM6xAlIaUUpRoFU37AmgWR0CeSonMdLg5dX2UKGgGaAloD0MIW1t4XkbTs0CUhpRSlGgVTegDaBZHQJ5LM47zTWp1fZQoaAZoCWgPQwhLdJZZwDKzQJSGlFKUaBVN6ANoFkdAnlf/mT1TSHV9lChoBmgJaA9DCKpgVFIP8rNAlIaUUpRoFU3oA2gWR0CeWK9qDbrUdX2UKGgGaAloD0MIBVPNrLEstECUhpRSlGgVTegDaBZHQJ5lR1zQu291fZQoaAZoCWgPQwgpIsMqhi20QJSGlFKUaBVN6ANoFkdAnmXxtpEhJXV9lChoBmgJaA9DCP1OkxmvhqhAlIaUUpRoFU2CAmgWR0Ceb7HQyAQQdX2UKGgGaAloD0MIfNY1WgYftECUhpRSlGgVTegDaBZHQJ5yioGY8dR1fZQoaAZoCWgPQwjH9IQlTrazQJSGlFKUaBVN6ANoFkdAnn0Xtv4ub3V9lChoBmgJaA9DCJp8s82ZP7RAlIaUUpRoFU3oA2gWR0Cef+/kNnXedX2UKGgGaAloD0MIqaCi6kfLs0CUhpRSlGgVTegDaBZHQJ6KfVNHpbF1fZQoaAZoCWgPQwjf+Nozdxe0QJSGlFKUaBVN6ANoFkdAno1aZ+hGpnV9lChoBmgJaA9DCJsb0xOWfW9AlIaUUpRoFUtqaBZHQJ6OahJyyUt1fZQoaAZoCWgPQwgJGjOJmhW0QJSGlFKUaBVN6ANoFkdAnpfbgOz6anV9lChoBmgJaA9DCGPRdHayy4hAlIaUUpRoFUvgaBZHQJ6aFz5oGpx1fZQoaAZoCWgPQwi5xJEH1lm0QJSGlFKUaBVN6ANoFkdAnpvItthuwXV9lChoBmgJaA9DCMTQ6uR8aZxAlIaUUpRoFU2WAWgWR0Cen8FjNIK/dX2UKGgGaAloD0MId06zQDsBlECUhpRSlGgVTUoBaBZHQJ6mhkhA4XJ1fZQoaAZoCWgPQwjj4T0HYma0QJSGlFKUaBVN6ANoFkdAnqdtZA6dUnVlLg=="
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 489,
|
88 |
+
"n_steps": 1024,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 0.95,
|
91 |
+
"ent_coef": 0.0,
|
92 |
+
"vf_coef": 0.0,
|
93 |
+
"max_grad_norm": 0.0,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"batch_size": 128,
|
96 |
+
"cg_max_steps": 25,
|
97 |
+
"cg_damping": 0.1,
|
98 |
+
"line_search_shrinking_factor": 0.8,
|
99 |
+
"line_search_max_iter": 10,
|
100 |
+
"target_kl": 0.01,
|
101 |
+
"n_critic_updates": 20,
|
102 |
+
"sub_sampling_factor": 1
|
103 |
+
}
|
trpo-Walker2d-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d565495e694f6afa5198a7d9377fd39610cc8d386b4163ec8c988c6470906be7
|
3 |
+
size 48047
|
trpo-Walker2d-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8cfeb7fef7410f6083a415881980aa8f296658d429960a30ea64d52dae769e0
|
3 |
+
size 48766
|
trpo-Walker2d-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-Walker2d-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f04836ce51d2aaa84aeac81018fc0ce259f0f441b836d950601cafd7af4228f
|
3 |
+
size 4872
|