Upload 7 files
Browse files- .gitattributes +2 -0
- README.md +134 -49
- README_EN.md +127 -59
- assets/360Zhinao-7B-Chat-360K.en_score.png +0 -0
- assets/360Zhinao-7B-Chat-360K.zh_score.png +0 -0
- assets/WeChat.png +0 -0
- assets/cli_demo.gif +3 -0
- assets/web_demo.gif +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/cli_demo.gif filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/web_demo.gif filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,7 +1,15 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
<div align="center">
|
7 |
<h1>
|
@@ -9,16 +17,18 @@
|
|
9 |
</h1>
|
10 |
</div>
|
11 |
<div align="center">
|
12 |
-
|
13 |
-
|
14 |
-
💬 <a href="">WeChat (微信)</a>  
|
15 |
</div>
|
16 |
<br>
|
17 |
<p align="center">
|
18 |
欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。
|
19 |
</p>
|
20 |
|
21 |
-
|
|
|
|
|
22 |
🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
|
23 |
- **360Zhinao-7B-Base**
|
24 |
- **360Zhinao-7B-Chat-4K**
|
@@ -27,10 +37,14 @@
|
|
27 |
|
28 |
360智脑大模型特点如下:
|
29 |
- **基础模型**:采用 3.4 万亿 Tokens 的高质量语料库训练,以中文、英文、代码为主,在相关基准评测中,同尺寸有竞争力。
|
30 |
-
- **对话模型**:具有强大的对话能力,开放
|
|
|
|
|
31 |
|
32 |
# 更新信息
|
33 |
-
- [2024.04.10] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和
|
|
|
|
|
34 |
|
35 |
# 目录
|
36 |
- [下载地址](#下载地址)
|
@@ -40,39 +54,109 @@
|
|
40 |
- [模型微调](#模型微调)
|
41 |
- [许可证](#许可证)
|
42 |
|
|
|
|
|
43 |
# 下载地址
|
44 |
本次发布版本和下载链接见下表:
|
45 |
-
|
|
46 |
-
|
47 |
-
|
|
48 |
-
| 7B
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# 模型评估
|
51 |
-
我们在OpenCompass的主流评测数据集上验证了我们的模型性能,包括C-Eval、AGIEval、MMLU、CMMLU、HellaSwag、MATH、GSM8K、HumanEval、MBPP、BBH、LAMBADA,考察的能力包括自然语言理解、知识、数学计算和推理、代码生成、逻辑推理等。
|
52 |
|
53 |
## 基础模型
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
58 |
-
|
59 |
-
| Baichuan2-7B
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
| LLaMA-7B |
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
|
|
73 |
|
74 |
以上结果,在官方[Opencompass](https://rank.opencompass.org.cn/leaderboard-llm)上可查询或可复现。
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# 快速开始
|
77 |
简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao-7B-Base和360Zhinao-7B-Chat
|
78 |
|
@@ -122,6 +206,7 @@ inputs = inputs.to(model.device)
|
|
122 |
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
123 |
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
124 |
```
|
|
|
125 |
### Chat模型推理
|
126 |
|
127 |
此代码演示使用transformers快速使用360Zhinao-7B-Chat-4K模型进行推理
|
@@ -270,17 +355,11 @@ curl --location --request POST 'http://localhost:8360/v1/chat/completions' \
|
|
270 |
}'
|
271 |
```
|
272 |
|
|
|
|
|
273 |
# 模型推理
|
274 |
## 模型量化
|
275 |
-
我们提供了基于AutoGPTQ的量化方案,并开源了Int4
|
276 |
-
|
277 |
-
对BF16,Int8和Int4模型在基准评测上做了测试,结果如下所示:
|
278 |
-
|
279 |
-
| Quantization | MMLU | CEval (val) | GSM8K | Humaneval |
|
280 |
-
|-|-|-|-|-|
|
281 |
-
| 360Zhinao-7B-Chat-4K (BF16) |-|-|-|-|
|
282 |
-
| 360Zhinao-7B-Chat-4K (Int8) |-|-|-|-|
|
283 |
-
| 360Zhinao-7B-Chat-4K (Int4) |-|-|-|-|
|
284 |
|
285 |
## 模型部署
|
286 |
### vLLM安装环境
|
@@ -295,7 +374,8 @@ pip install vllm==0.3.3
|
|
295 |
|
296 |
>安装完成后,还需要以下操作~
|
297 |
1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
|
298 |
-
2.
|
|
|
299 |
|
300 |
```shell
|
301 |
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
@@ -309,8 +389,8 @@ python -m vllm.entrypoints.openai.api_server \
|
|
309 |
--served-model-name 360Zhinao-7B-Chat-4K \
|
310 |
--model qihoo360/360Zhinao-7B-Chat-4K \
|
311 |
--trust-remote-code \
|
312 |
-
--tensor-parallel-size 1
|
313 |
-
--max-model-len
|
314 |
--host 0.0.0.0 \
|
315 |
--port 8360
|
316 |
```
|
@@ -322,7 +402,7 @@ curl http://localhost:8360/v1/chat/completions \
|
|
322 |
-d '{
|
323 |
"model": "360Zhinao-7B-Chat-4K",
|
324 |
"max_tokens": 200,
|
325 |
-
"top_k":
|
326 |
"top_p": 0.8,
|
327 |
"temperature": 1.0,
|
328 |
"presence_penalty": 0.0,
|
@@ -343,7 +423,7 @@ curl http://localhost:8360/v1/chat/completions \
|
|
343 |
from openai import OpenAI
|
344 |
# Set OpenAI's API key and API base to use vLLM's API server.
|
345 |
openai_api_key = "EMPTY"
|
346 |
-
openai_api_base = "http://localhost:
|
347 |
|
348 |
client = OpenAI(
|
349 |
api_key=openai_api_key,
|
@@ -369,6 +449,8 @@ print("Chat response:", chat_response)
|
|
369 |
|
370 |
> 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。
|
371 |
|
|
|
|
|
372 |
# 模型微调
|
373 |
## 训练数据
|
374 |
|
@@ -396,6 +478,7 @@ print("Chat response:", chat_response)
|
|
396 |
}
|
397 |
]
|
398 |
```
|
|
|
399 |
## 微调训练
|
400 |
训练脚本如下:
|
401 |
```shell
|
@@ -458,8 +541,10 @@ bash finetune/ds_finetune.sh
|
|
458 |
- 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
|
459 |
- 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。
|
460 |
|
|
|
|
|
461 |
# 许可证
|
462 |
|
463 |
本仓库源码遵循开源许可证Apache 2.0。
|
464 |
|
465 |
-
360
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- qihoo360
|
9 |
+
- 奇虎360
|
10 |
+
- 360Zhinao
|
11 |
+
- pretrain
|
12 |
+
---
|
13 |
|
14 |
<div align="center">
|
15 |
<h1>
|
|
|
17 |
</h1>
|
18 |
</div>
|
19 |
<div align="center">
|
20 |
+
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
21 |
+
🔥 <a href="https://github.com/Qihoo360/360zhinao/blob/main/assets/WeChat.png">GitHub</a>   |   
|
22 |
+
💬 <a href="https://github.com/Qihoo360/360zhinao/blob/main/assets/WeChat.png">WeChat (微信)</a>  
|
23 |
</div>
|
24 |
<br>
|
25 |
<p align="center">
|
26 |
欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。
|
27 |
</p>
|
28 |
|
29 |
+
<br>
|
30 |
+
|
31 |
+
# 模型介绍
|
32 |
🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
|
33 |
- **360Zhinao-7B-Base**
|
34 |
- **360Zhinao-7B-Chat-4K**
|
|
|
37 |
|
38 |
360智脑大模型特点如下:
|
39 |
- **基础模型**:采用 3.4 万亿 Tokens 的高质量语料库训练,以中文、英文、代码为主,在相关基准评测中,同尺寸有竞争力。
|
40 |
+
- **对话模型**:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。据了解,360K(约50万字)是当前国产开源模型文本长度最长的。
|
41 |
+
|
42 |
+
<br>
|
43 |
|
44 |
# 更新信息
|
45 |
+
- [2024.04.10] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
|
46 |
+
|
47 |
+
<br>
|
48 |
|
49 |
# 目录
|
50 |
- [下载地址](#下载地址)
|
|
|
54 |
- [模型微调](#模型微调)
|
55 |
- [许可证](#许可证)
|
56 |
|
57 |
+
<br>
|
58 |
+
|
59 |
# 下载地址
|
60 |
本次发布版本和下载链接见下表:
|
61 |
+
| Size | Model | BF16 | Int4|
|
62 |
+
|:-:|-|:-:|:-:|
|
63 |
+
| 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | |
|
64 |
+
| 7B | 360Zhinao-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K-Int4">🤗</a> |
|
65 |
+
| 7B | 360Zhinao-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K-Int4">🤗</a> |
|
66 |
+
| 7B | 360Zhinao-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K-Int4">🤗</a> |
|
67 |
+
|
68 |
+
<br>
|
69 |
|
70 |
# 模型评估
|
|
|
71 |
|
72 |
## 基础模型
|
73 |
+
我们在OpenCompass的主流评测数据集上验证了我们的模型性能,包括C-Eval、AGIEval、MMLU、CMMLU、HellaSwag、MATH、GSM8K、HumanEval、MBPP、BBH、LAMBADA,考察的能力包括自然语言理解、知识、数学计算和推理、代码生成、逻辑推理等。
|
74 |
+
|
75 |
+
|
76 |
+
| <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
|
77 |
+
|:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
78 |
+
| Baichuan2-7B | 41.49 | 56.3 | 34.6 | 54.7 | 57 | 67 | 5.4 | 24.6 | 17.7 | 24 | 41.8 | 73.3 |
|
79 |
+
| Baichuan-7B | 31.94 | 44.7 | 24.6 | 41.5 | 44.6 | 68.4 | 2.5 | 9.6 | 9.1 | 6.4 | 32.8 | 67.1 |
|
80 |
+
| ChatGLM3-6B | **58.67** | 67 | 47.4 | 62.8 | 66.5 | 76.5 | 19.2 | 61 | 44.5 | **57.2** | **66.2** | 77.1 |
|
81 |
+
| DeepSeek-7B | 39.8 | 45 | 24 | 49.3 | 46.8 | 73.4 | 4.2 | 18.3 | 25 | 36.4 | 42.8 | 72.6 |
|
82 |
+
| InternLM2-7B | 58.01 | 65.7 | 50.2 | 65.5 | 66.2 | 79.6 | 19.9 | **70.6** | 41.5 | 42.4 | 64.4 | 72.1 |
|
83 |
+
| InternLM-7B | 39.33 | 53.4 | 36.9 | 51 | 51.8 | 70.6 | 6.3 | 31.2 | 13.4 | 14 | 37 | 67 |
|
84 |
+
| LLaMA-2-7B | 33.27 | 32.5 | 21.8 | 46.8 | 31.8 | 74 | 3.3 | 16.7 | 12.8 | 14.8 | 38.2 | 73.3 |
|
85 |
+
| LLaMA-7B | 30.35 | 27.3 | 20.6 | 35.6 | 26.8 | 74.3 | 2.9 | 10 | 12.8 | 16.8 | 33.5 | 73.3 |
|
86 |
+
| Mistral-7B-v0.1 | 47.67 | 47.4 | 32.8 | 64.1 | 44.7 | 78.9 | 11.3 | 47.5 | 27.4 | 38.6 | 56.7 | 75 |
|
87 |
+
| MPT-7B | 30.06 | 23.5 | 21.3 | 27.5 | 25.9 | 75 | 2.9 | 9.1 | 17.1 | 22.8 | 35.6 | 70 |
|
88 |
+
| Qwen1.5-7B | 55.12 | 73.57 | **50.8** | 62.15 | 71.84 | 72.62 | **20.36** | 54.36 | **53.05** | 36.8 | 40.01 | 70.74 |
|
89 |
+
| Qwen-7B | 49.53 | 63.4 | 45.3 | 59.7 | 62.5 | 75 | 13.3 | 54.1 | 27.4 | 31.4 | 45.2 | 67.5 |
|
90 |
+
| XVERSE-7B | 34.27 | 61.1 | 39 | 58.4 | 60.8 | 73.7 | 2.2 | 11.7 | 4.9 | 10.2 | 31 | 24 |
|
91 |
+
| Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
|
92 |
+
| **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** |
|
93 |
|
94 |
以上结果,在官方[Opencompass](https://rank.opencompass.org.cn/leaderboard-llm)上可查询或可复现。
|
95 |
|
96 |
+
## Chat模型
|
97 |
+
|
98 |
+
我们采用两阶段的方式训练长文本模型.
|
99 |
+
|
100 |
+
**第一阶段**:我们增大RoPE base,将上下文长度扩展至32K训练:
|
101 |
+
- 首先,对基础模型进行了约5B tokens的32K窗口继续预训练。
|
102 |
+
- 接着,SFT阶段使用了多种形式和来源的长文本数据,包括高质量的人工标注32K长文本数据。
|
103 |
+
|
104 |
+
**第二阶段**:我们将上下文长度扩展至360K进行训练,使用数据如下:
|
105 |
+
- 少量高质量人工标注数据。
|
106 |
+
- 由于带有标注的超长文本数据的稀缺性,我们构造了多种形式的合成数据:
|
107 |
+
- 多文档问答:类似[Ziya-Reader](https://arxiv.org/abs/2311.09198),我们基于360自有数据构造了多种类型的多���档问答数据,同时将问答改为多轮,显著提升长文本的训练效率。
|
108 |
+
- 单文档问答:类似[LLama2 Long](https://arxiv.org/abs/2309.16039),我们构造了基于超长文本各个片段的多轮问答数据。
|
109 |
+
|
110 |
+
我们在多种长度和多种任务的评测Benchmark上验证不同版本模型的性能。
|
111 |
+
|
112 |
+
- ### 360Zhinao-7B-Chat-32K模型长文本能力评测
|
113 |
+
|
114 |
+
|
115 |
+
我们使用LongBench验证长文本效果。[LongBench](https://github.com/THUDM/LongBench)是第一个多任务、中英双语、针对大语言模型长文本理解能力的评测基准。LongBench由六大类、二十一个不同的任务组成,我们选择其中与中文长文本应用最密切相关的中文单文档问答、多文档问答、摘要、Few-shot等任务进行评测。
|
116 |
+
|
117 |
+
| Model | Avg | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 |
|
118 |
+
| :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
|
119 |
+
| GPT-3.5-Turbo-16k | 37.84 | 61.2 | 28.7 | 16 | 29.2 | 54.1 |
|
120 |
+
| ChatGLM2-6B-32k | 37.16 | 51.6 | 37.6 | 16.2 | 27.7 | 52.7 |
|
121 |
+
| ChatGLM3-6B-32k | 44.62 | **62.3** | 44.8 | 17.8 | 42 | 56.2 |
|
122 |
+
| InternLM2-Chat-7B | 42.20 | 56.65 | 29.15 | **17.99** | 43.5 | **63.72** |
|
123 |
+
| Qwen1.5-Chat-7B | 36.75 | 52.85 | 30.08 | 14.28 | 32 | 54.55 |
|
124 |
+
| Qwen1.5-Chat-14B | 39.80 | 60.39 | 27.99 | 14.77 | 37 | 58.87 |
|
125 |
+
| 360Zhinao-7B-Chat-32K | **45.18** | 57.18 | **48.06** | 15.03 | **44** | 61.64 |
|
126 |
+
|
127 |
+
- ### 360Zhinao-7B-Chat-360K“大海捞针”测试
|
128 |
+
|
129 |
+
大海捞针测试([NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack))是将关键信息插入一段长文本的不同位置,再对该关键信息提问,从而测试大模型的长文本能力的一种方法。
|
130 |
+
|
131 |
+
360Zhinao-7B-Chat-360K在中英文大海捞针中都能达到98%以上的准确率。
|
132 |
+
|
133 |
+
- 英文"大海捞针"(和[NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack)相同)
|
134 |
+
|
135 |
+
<p align="center">
|
136 |
+
<img src="assets/360Zhinao-7B-Chat-360K.en_score.png" width="600" />
|
137 |
+
<p>
|
138 |
+
|
139 |
+
**针**:The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
|
140 |
+
|
141 |
+
**提问**:What is the best thing to do in San Francisco?
|
142 |
+
|
143 |
+
|
144 |
+
- 中文“大海捞针”
|
145 |
+
|
146 |
+
<p align="center">
|
147 |
+
<img src="assets/360Zhinao-7B-Chat-360K.zh_score.png" width="600" />
|
148 |
+
<p>
|
149 |
+
|
150 |
+
我们仿照[SuperCLUE-200K测评基准](https://mp.weixin.qq.com/s/QgoRf2LB-7vc3vTFOHJkpw)构造了中文大海捞针:
|
151 |
+
|
152 |
+
**海**:长篇小说。
|
153 |
+
|
154 |
+
**针**:王莽是一名勤奋的店员,他每天凌晨就起床,赶在第一缕阳光照亮大地之前到达店铺,为即将开始的一天做准备。他清扫店铺,整理货架,为顾客提供方便。他对五金的种类和用途了如指掌,无论顾客需要什么,他总能准确地找到。\n然而,他的老板刘秀却总是对他吹毛求疵。刘秀是个挑剔的人,他总能在王莽的工作中找出一些小错误,然后以此为由扣他的工资。他对王莽的工作要求非常严格,甚至有些过分。即使王莽做得再好,刘秀也总能找出一些小问题,让王莽感到非常沮丧。\n王莽虽然对此感到不满,但他并没有放弃。他知道,只有通过自己的努力,才能获得更好的生活。他坚持每天早起,尽管他知道那天可能会再次被刘秀扣工资。他始终保持微笑,尽管他知道刘秀可能会再次对他挑剔。
|
155 |
+
|
156 |
+
**提问**:王莽在谁的手下工作?
|
157 |
+
|
158 |
+
<br>
|
159 |
+
|
160 |
# 快速开始
|
161 |
简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao-7B-Base和360Zhinao-7B-Chat
|
162 |
|
|
|
206 |
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
207 |
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
208 |
```
|
209 |
+
|
210 |
### Chat模型推理
|
211 |
|
212 |
此代码演示使用transformers快速使用360Zhinao-7B-Chat-4K模型进行推理
|
|
|
355 |
}'
|
356 |
```
|
357 |
|
358 |
+
<br>
|
359 |
+
|
360 |
# 模型推理
|
361 |
## 模型量化
|
362 |
+
我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
## 模型部署
|
365 |
### vLLM安装环境
|
|
|
374 |
|
375 |
>安装完成后,还需要以下操作~
|
376 |
1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
|
377 |
+
2. 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。
|
378 |
+
3. 然后在vllm/model_executor/models/\_\_init\_\_.py文件增加一行代码
|
379 |
|
380 |
```shell
|
381 |
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
|
|
389 |
--served-model-name 360Zhinao-7B-Chat-4K \
|
390 |
--model qihoo360/360Zhinao-7B-Chat-4K \
|
391 |
--trust-remote-code \
|
392 |
+
--tensor-parallel-size 1 \
|
393 |
+
--max-model-len 4096 \
|
394 |
--host 0.0.0.0 \
|
395 |
--port 8360
|
396 |
```
|
|
|
402 |
-d '{
|
403 |
"model": "360Zhinao-7B-Chat-4K",
|
404 |
"max_tokens": 200,
|
405 |
+
"top_k": -1,
|
406 |
"top_p": 0.8,
|
407 |
"temperature": 1.0,
|
408 |
"presence_penalty": 0.0,
|
|
|
423 |
from openai import OpenAI
|
424 |
# Set OpenAI's API key and API base to use vLLM's API server.
|
425 |
openai_api_key = "EMPTY"
|
426 |
+
openai_api_base = "http://localhost:8360/v1"
|
427 |
|
428 |
client = OpenAI(
|
429 |
api_key=openai_api_key,
|
|
|
449 |
|
450 |
> 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。
|
451 |
|
452 |
+
<br>
|
453 |
+
|
454 |
# 模型微调
|
455 |
## 训练数据
|
456 |
|
|
|
478 |
}
|
479 |
]
|
480 |
```
|
481 |
+
|
482 |
## 微调训练
|
483 |
训练脚本如下:
|
484 |
```shell
|
|
|
541 |
- 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
|
542 |
- 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。
|
543 |
|
544 |
+
<br>
|
545 |
+
|
546 |
# 许可证
|
547 |
|
548 |
本仓库源码遵循开源许可证Apache 2.0。
|
549 |
|
550 |
+
360智脑开源模型支持商用,若需将本模型及衍生模型用于商业用途,请通过邮箱(g-zhinao-opensource@360.cn)联系进行申请, 具体许可协议请见[《360智脑开源模型许可证》](./360智脑开源模型许可证.txt)。
|
README_EN.md
CHANGED
@@ -1,36 +1,38 @@
|
|
1 |
-
<p align="left">
|
2 |
-
中文</a>  |  <a href="README_EN.md">English</a> 
|
3 |
-
</p>
|
4 |
-
<br>
|
5 |
-
|
6 |
<div align="center">
|
7 |
<h1>
|
8 |
-
360智脑
|
9 |
</h1>
|
10 |
</div>
|
11 |
<div align="center">
|
12 |
-
|
13 |
-
|
14 |
-
💬 <a href="">WeChat (微信)</a>  
|
15 |
</div>
|
16 |
<br>
|
17 |
<p align="center">
|
18 |
-
|
19 |
</p>
|
20 |
|
|
|
|
|
21 |
# Models Introduction
|
22 |
-
🎉🎉🎉We
|
23 |
- **360Zhinao-7B-Base**
|
24 |
- **360Zhinao-7B-Chat-4K**
|
25 |
- **360Zhinao-7B-Chat-32K**
|
26 |
- **360Zhinao-7B-Chat-360K**
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
- **
|
|
|
|
|
|
|
31 |
|
32 |
# News and Updates
|
33 |
-
- 2024.04.
|
|
|
|
|
34 |
|
35 |
# Table of contents
|
36 |
- [Download URL](#Download-URL)
|
@@ -40,39 +42,106 @@ The characteristics of the 360Zhinao open-source project are:
|
|
40 |
- [Model Finetune](#Model-Finetune)
|
41 |
- [License](#License)
|
42 |
|
|
|
43 |
|
44 |
# Download URL
|
45 |
See the following table for this release and download links:
|
46 |
-
|
|
47 |
-
|
48 |
-
|
|
49 |
-
| 7B
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Model Evaluation
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
| Model |
|
56 |
-
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# Quickstart
|
78 |
Simple examples to illustrate how to use 360Zhinao-7B-Base and 360Zhinao-7B-Chat quickly using 🤖 ModelScope and 🤗 Transformers
|
@@ -189,7 +258,7 @@ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generatio
|
|
189 |
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
190 |
```
|
191 |
|
192 |
-
### Demonstration of
|
193 |
|
194 |
This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Chat-4K model for inference.
|
195 |
|
@@ -270,17 +339,11 @@ curl --location --request POST 'http://localhost:8360/v1/chat/completions' \
|
|
270 |
}'
|
271 |
```
|
272 |
|
|
|
|
|
273 |
# Model Inference
|
274 |
## Quantization
|
275 |
-
We provide quantization schemes based on AutoGPTQ and open source the Int4 quantization models.
|
276 |
-
|
277 |
-
The BF16, Int8, and Int4 models are tested on the benchmarks, and the results are as follows:
|
278 |
-
|
279 |
-
| Quantization | MMLU | CEval (val) | GSM8K | Humaneval |
|
280 |
-
|-|-|-|-|-|
|
281 |
-
| 360Zhinao-7B-Chat-4K (BF16) |-|-|-|-|
|
282 |
-
| 360Zhinao-7B-Chat-4K (Int8) |-|-|-|-|
|
283 |
-
| 360Zhinao-7B-Chat-4K (Int4) |-|-|-|-|
|
284 |
|
285 |
## Deployment
|
286 |
### vLLM Installation
|
@@ -295,7 +358,8 @@ Otherwise, please refer to the official vLLM [Installation Instructions](https:/
|
|
295 |
|
296 |
>Once the installation is complete, you will need to do the following
|
297 |
1. Copy the vllm/zhinao.py file to the vllm/model_executor/models directory corresponding to your env environment.
|
298 |
-
2.
|
|
|
299 |
|
300 |
```shell
|
301 |
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
@@ -307,10 +371,10 @@ Starting the service
|
|
307 |
```shell
|
308 |
python -m vllm.entrypoints.openai.api_server \
|
309 |
--served-model-name 360Zhinao-7B-Chat-4K \
|
310 |
-
--model qihoo360/360Zhinao-7B-Chat-
|
311 |
--trust-remote-code \
|
312 |
-
--tensor-parallel-size 1
|
313 |
-
--max-model-len
|
314 |
--host 0.0.0.0 \
|
315 |
--port 8360
|
316 |
```
|
@@ -322,7 +386,7 @@ curl http://localhost:8360/v1/chat/completions \
|
|
322 |
-d '{
|
323 |
"model": "360Zhinao-7B-Chat-4K",
|
324 |
"max_tokens": 200,
|
325 |
-
"top_k":
|
326 |
"top_p": 0.8,
|
327 |
"temperature": 1.0,
|
328 |
"presence_penalty": 0.0,
|
@@ -342,7 +406,7 @@ Use python to request the service
|
|
342 |
```python
|
343 |
from openai import OpenAI
|
344 |
openai_api_key = "EMPTY"
|
345 |
-
openai_api_base = "http://localhost:
|
346 |
|
347 |
client = OpenAI(
|
348 |
api_key=openai_api_key,
|
@@ -370,6 +434,8 @@ print("Chat response:", chat_response)
|
|
370 |
|
371 |
>
|
372 |
|
|
|
|
|
373 |
# Model Finetune
|
374 |
## Training data
|
375 |
|
@@ -458,6 +524,8 @@ bash finetune/ds_finetune.sh
|
|
458 |
- By configuring the **fp16**、**bf16** realize mixed precision training, bf16 is recommended to be consistent with the pre-trained model.
|
459 |
- By configuring **is_concat**, Whether the training data is concatenated or not is controlled. When the magnitude of the training data is large, the training efficiency can be improved by concatenation.
|
460 |
|
|
|
|
|
461 |
# License
|
462 |
|
463 |
The source code of this warehouse follows the open source license Apache 2.0.
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
<div align="center">
|
2 |
<h1>
|
3 |
+
360Zhinao (360智脑)
|
4 |
</h1>
|
5 |
</div>
|
6 |
<div align="center">
|
7 |
+
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
8 |
+
🔥 <a href="https://github.com/Qihoo360/360zhinao/blob/main/assets/WeChat.png">GitHub</a>   |   
|
9 |
+
💬 <a href="https://github.com/Qihoo360/360zhinao/tree/main/assets/WeChat.png">WeChat (微信)</a>  
|
10 |
</div>
|
11 |
<br>
|
12 |
<p align="center">
|
13 |
+
Feel free to visit 360Zhinao's official website<a href="https://ai.360.com"> https://ai.360.com</a> for more experience.
|
14 |
</p>
|
15 |
|
16 |
+
<br>
|
17 |
+
|
18 |
# Models Introduction
|
19 |
+
🎉🎉🎉We open-source the 360Zhinao model series:
|
20 |
- **360Zhinao-7B-Base**
|
21 |
- **360Zhinao-7B-Chat-4K**
|
22 |
- **360Zhinao-7B-Chat-32K**
|
23 |
- **360Zhinao-7B-Chat-360K**
|
24 |
|
25 |
+
|
26 |
+
The characteristics of the 360Zhinao open-source models are:
|
27 |
+
- **Base Model:** Leveraging a high-quality corpus of 3.4 trillion Tokens which mainly consist of Chinese, English and code, we achieved competitive performance on relevant benchmark evaluations of the same model scale.
|
28 |
+
- **Chat Model:** Powerful chat capabilities and three different sequence lengths of 4K, 32K and 360K. 360K (about 500k Chinese characters) is the longest sequcence length among open-sourced Chinese models until now.
|
29 |
+
|
30 |
+
<br>
|
31 |
|
32 |
# News and Updates
|
33 |
+
- 2024.04.11 We release **360Zhinao-7B** 1.0 version, include the base model and three chat model with sequence lengths of 4K, 32K adn 360K.
|
34 |
+
|
35 |
+
<br>
|
36 |
|
37 |
# Table of contents
|
38 |
- [Download URL](#Download-URL)
|
|
|
42 |
- [Model Finetune](#Model-Finetune)
|
43 |
- [License](#License)
|
44 |
|
45 |
+
<br>
|
46 |
|
47 |
# Download URL
|
48 |
See the following table for this release and download links:
|
49 |
+
| Size | Model | BF16 | Int4|
|
50 |
+
|-|-|-|-|
|
51 |
+
| 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | |
|
52 |
+
| 7B | 360Zhinao-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K-Int4">🤗</a> |
|
53 |
+
| 7B | 360Zhinao-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K-Int4">🤗</a> |
|
54 |
+
| 7B | 360Zhinao-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K-Int4">🤗</a> |
|
55 |
+
|
56 |
+
<br>
|
57 |
|
58 |
# Model Evaluation
|
59 |
+
## Base Model
|
60 |
+
We evaluate the performance of our model on the OpenCompass evaluation datasets, including C-Eval, AGIEval, MMLU, CMMLU, HellaSwag, MATH, GSM8K, HumanEval, MBPP, BBH, LAMBADA. The ablity evaluated of model include natural language understanding, knowledge, mathematical computation and reasoning, code generation, logical reasoning, etc.
|
61 |
+
|
62 |
+
| <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
|
63 |
+
|:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
64 |
+
| Baichuan2-7B | 41.49 | 56.3 | 34.6 | 54.7 | 57 | 67 | 5.4 | 24.6 | 17.7 | 24 | 41.8 | 73.3 |
|
65 |
+
| Baichuan-7B | 31.94 | 44.7 | 24.6 | 41.5 | 44.6 | 68.4 | 2.5 | 9.6 | 9.1 | 6.4 | 32.8 | 67.1 |
|
66 |
+
| ChatGLM3-6B | **58.67** | 67 | 47.4 | 62.8 | 66.5 | 76.5 | 19.2 | 61 | 44.5 | **57.2** | **66.2** | 77.1 |
|
67 |
+
| DeepSeek-7B | 39.8 | 45 | 24 | 49.3 | 46.8 | 73.4 | 4.2 | 18.3 | 25 | 36.4 | 42.8 | 72.6 |
|
68 |
+
| InternLM2-7B | 58.01 | 65.7 | 50.2 | 65.5 | 66.2 | 79.6 | 19.9 | **70.6** | 41.5 | 42.4 | 64.4 | 72.1 |
|
69 |
+
| InternLM-7B | 39.33 | 53.4 | 36.9 | 51 | 51.8 | 70.6 | 6.3 | 31.2 | 13.4 | 14 | 37 | 67 |
|
70 |
+
| LLaMA-2-7B | 33.27 | 32.5 | 21.8 | 46.8 | 31.8 | 74 | 3.3 | 16.7 | 12.8 | 14.8 | 38.2 | 73.3 |
|
71 |
+
| LLaMA-7B | 30.35 | 27.3 | 20.6 | 35.6 | 26.8 | 74.3 | 2.9 | 10 | 12.8 | 16.8 | 33.5 | 73.3 |
|
72 |
+
| Mistral-7B-v0.1 | 47.67 | 47.4 | 32.8 | 64.1 | 44.7 | 78.9 | 11.3 | 47.5 | 27.4 | 38.6 | 56.7 | 75 |
|
73 |
+
| MPT-7B | 30.06 | 23.5 | 21.3 | 27.5 | 25.9 | 75 | 2.9 | 9.1 | 17.1 | 22.8 | 35.6 | 70 |
|
74 |
+
| Qwen1.5-7B | 55.12 | 73.57 | **50.8** | 62.15 | 71.84 | 72.62 | **20.36** | 54.36 | **53.05** | 36.8 | 40.01 | 70.74 |
|
75 |
+
| Qwen-7B | 49.53 | 63.4 | 45.3 | 59.7 | 62.5 | 75 | 13.3 | 54.1 | 27.4 | 31.4 | 45.2 | 67.5 |
|
76 |
+
| XVERSE-7B | 34.27 | 61.1 | 39 | 58.4 | 60.8 | 73.7 | 2.2 | 11.7 | 4.9 | 10.2 | 31 | 24 |
|
77 |
+
| Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
|
78 |
+
| **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** |
|
79 |
+
|
80 |
+
The above results could be viewed or reproduced on [Opencompass](https://rank.opencompass.org.cn/leaderboard-llm).
|
81 |
+
|
82 |
+
## Chat Models
|
83 |
+
|
84 |
+
We adopted a two-stage approach to train the long context models.
|
85 |
+
|
86 |
+
**First stage**: We increased RoPE base and extended the context length to 32K.
|
87 |
+
- Firstly, we performed Continual Pretraining on approximately 5B tokens with a 32K context window.
|
88 |
+
- Then during the SFT stage, we fine-tuned the model using long data from various sources, including high-quality human-labeled 32K data.
|
89 |
+
|
90 |
+
**Second stage**: We extended the context length to 360K, training with the following data:
|
91 |
+
- A small amount of high-quality human-labeled super-long data.
|
92 |
+
- Due to the scarcity of annotated super-long data, we constructed various forms of synthetic data.
|
93 |
+
- Multi-Doc QA: Similar to [Ziya-Reader](https://arxiv.org/abs/2311.09198), we generated multi-document QA pairs based on 360's database. Multiple QA pairs are constructed for one row of Multi-Doc QA data input, resulting in a multi-turn format and significantly improving the training efficiency.
|
94 |
+
- Single-Doc QA: Similar to [LLama2 Long](https://arxiv.org/abs/2309.16039), we constructed multi-turn QA data based on different segments within one row of long-text input.
|
95 |
+
|
96 |
+
We evaluated our models across various lengths and benchmarks.
|
97 |
+
|
98 |
+
- ### Long Context Benchmarks
|
99 |
+
|
100 |
+
|
101 |
+
We evaluated our 32K and 360K models on [LongBench](https://github.com/THUDM/LongBench), a multi-task bilingual benchmark for long contexts. We report results on Chinese tasks that are the most relevant to downstream applications: Single/Multi-Doc QA, Summarization, Few-Shot Learning and Code Completion.
|
102 |
+
|
103 |
+
| Model | Avg | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 |
|
104 |
+
| :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
|
105 |
+
| GPT-3.5-Turbo-16k | 37.84 | 61.2 | 28.7 | 16 | 29.2 | 54.1 |
|
106 |
+
| ChatGLM2-6B-32k | 37.16 | 51.6 | 37.6 | 16.2 | 27.7 | 52.7 |
|
107 |
+
| ChatGLM3-6B-32k | 44.62 | **62.3** | 44.8 | 17.8 | 42 | 56.2 |
|
108 |
+
| InternLM2-Chat-7B | 42.20 | 56.65 | 29.15 | **17.99** | 43.5 | **63.72** |
|
109 |
+
| Qwen1.5-Chat-7B | 36.75 | 52.85 | 30.08 | 14.28 | 32 | 54.55 |
|
110 |
+
| Qwen1.5-Chat-14B | 39.80 | 60.39 | 27.99 | 14.77 | 37 | 58.87 |
|
111 |
+
| 360Zhinao-7B-Chat-32K | **45.18** | 57.18 | **48.06** | 15.03 | **44** | 61.64 |
|
112 |
+
|
113 |
+
- ### 360Zhinao-7B-Chat-360K on "NeedleInAHaystack"
|
114 |
+
|
115 |
+
[NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack) places one small piece of information in different positions of long text and queries this information as a test of LLM's long-context capabilities.
|
116 |
+
|
117 |
+
360Zhinao-7B-Chat-360K could achieve over 98% accuracy on both English and Chinese NeedleInAHaystack tasks.
|
118 |
+
|
119 |
+
- English version(same as [NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack))
|
120 |
+
|
121 |
+
<p align="center">
|
122 |
+
<img src="assets/360Zhinao-7B-Chat-360K.en_score.png" width="600" />
|
123 |
+
<p>
|
124 |
+
|
125 |
+
**needle**:The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
|
126 |
+
|
127 |
+
**query**:What is the best thing to do in San Francisco?
|
128 |
+
|
129 |
+
|
130 |
+
- Chinese version
|
131 |
+
|
132 |
+
<p align="center">
|
133 |
+
<img src="assets/360Zhinao-7B-Chat-360K.zh_score.png" width="600" />
|
134 |
+
<p>
|
135 |
+
|
136 |
+
We constructed the Chinese version following the [SuperCLUE-200K benchmark](https://mp.weixin.qq.com/s/QgoRf2LB-7vc3vTFOHJkpw):
|
137 |
+
|
138 |
+
**haystack**:Chinese novels.
|
139 |
+
|
140 |
+
**needle**:(in Chinese) 王莽是一名勤奋的店员,他每天凌晨就起床,赶在第一缕阳光照亮大地之前到达店铺,为即将开始的一天做准备。他清扫店铺,整理货架,为顾客提供方便。他对五金的种类和用途了如指掌,无论顾客需要什么,他总能准确地找到。\n然而,他的老板刘秀却总是对他吹毛求疵。刘秀是个挑剔的人,他总能在王莽的工作中找出一些小错误,然后以此为由扣他的工资。他对王莽的工作要求非常严格,甚至有些过分。即使王莽做得再好,刘秀也总能找出一些小问题,让王莽感到非常沮丧。\n王莽虽然对此感到不满,但他并没有放弃。他知道,只有通过自己的努力,才能获得更好的生活。他坚持每天早起,尽管他知道那天可能会再次被刘秀扣工资。他始终保持微笑,尽管他知道刘秀可能会再次对他挑剔。
|
141 |
+
|
142 |
+
**query**:(in Chinese) 王莽在谁的手下工作?
|
143 |
+
|
144 |
+
<br>
|
145 |
|
146 |
# Quickstart
|
147 |
Simple examples to illustrate how to use 360Zhinao-7B-Base and 360Zhinao-7B-Chat quickly using 🤖 ModelScope and 🤗 Transformers
|
|
|
258 |
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
259 |
```
|
260 |
|
261 |
+
### Demonstration of Chat Model Inference
|
262 |
|
263 |
This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Chat-4K model for inference.
|
264 |
|
|
|
339 |
}'
|
340 |
```
|
341 |
|
342 |
+
<br>
|
343 |
+
|
344 |
# Model Inference
|
345 |
## Quantization
|
346 |
+
We provide quantization schemes based on AutoGPTQ and open source the Int4 quantization models.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
## Deployment
|
349 |
### vLLM Installation
|
|
|
358 |
|
359 |
>Once the installation is complete, you will need to do the following
|
360 |
1. Copy the vllm/zhinao.py file to the vllm/model_executor/models directory corresponding to your env environment.
|
361 |
+
2. Copy the vllm/serving_chat.py file to the vllm/entrypoints/openai corresponding to your env environment.
|
362 |
+
3. Then add a line to vllm/model_executor/models/\_\_init\_\_.py
|
363 |
|
364 |
```shell
|
365 |
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
|
|
371 |
```shell
|
372 |
python -m vllm.entrypoints.openai.api_server \
|
373 |
--served-model-name 360Zhinao-7B-Chat-4K \
|
374 |
+
--model qihoo360/360Zhinao-7B-Chat-4K \
|
375 |
--trust-remote-code \
|
376 |
+
--tensor-parallel-size 1 \
|
377 |
+
--max-model-len 4096 \
|
378 |
--host 0.0.0.0 \
|
379 |
--port 8360
|
380 |
```
|
|
|
386 |
-d '{
|
387 |
"model": "360Zhinao-7B-Chat-4K",
|
388 |
"max_tokens": 200,
|
389 |
+
"top_k": -1,
|
390 |
"top_p": 0.8,
|
391 |
"temperature": 1.0,
|
392 |
"presence_penalty": 0.0,
|
|
|
406 |
```python
|
407 |
from openai import OpenAI
|
408 |
openai_api_key = "EMPTY"
|
409 |
+
openai_api_base = "http://localhost:8360/v1"
|
410 |
|
411 |
client = OpenAI(
|
412 |
api_key=openai_api_key,
|
|
|
434 |
|
435 |
>
|
436 |
|
437 |
+
<br>
|
438 |
+
|
439 |
# Model Finetune
|
440 |
## Training data
|
441 |
|
|
|
524 |
- By configuring the **fp16**、**bf16** realize mixed precision training, bf16 is recommended to be consistent with the pre-trained model.
|
525 |
- By configuring **is_concat**, Whether the training data is concatenated or not is controlled. When the magnitude of the training data is large, the training efficiency can be improved by concatenation.
|
526 |
|
527 |
+
<br>
|
528 |
+
|
529 |
# License
|
530 |
|
531 |
The source code of this warehouse follows the open source license Apache 2.0.
|
assets/360Zhinao-7B-Chat-360K.en_score.png
ADDED
assets/360Zhinao-7B-Chat-360K.zh_score.png
ADDED
assets/WeChat.png
ADDED
assets/cli_demo.gif
ADDED
Git LFS Details
|
assets/web_demo.gif
ADDED
Git LFS Details
|