|
from transformers.models.bert.modeling_bert import BertEncoder, BertPooler, BertEmbeddings, BertForMaskedLM, MaskedLMOutput |
|
from transformers import BertModel |
|
from typing import List, Optional, Tuple, Union |
|
import torch |
|
|
|
class BertEmbeddingsV2(BertEmbeddings): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.pad_token_id = config.pad_token_id |
|
self.position_embeddings = torch.nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values_length: int = 0, |
|
) -> torch.Tensor: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
position_ids = self.create_position_ids_from_input_ids(input_ids) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = inputs_embeds + position_embeddings |
|
return self.dropout(self.LayerNorm(embeddings)) |
|
|
|
def create_position_ids_from_input_ids(self, input_ids: torch.LongTensor) -> torch.Tensor: |
|
mask = input_ids.ne(self.pad_token_id).int() |
|
return torch.cumsum(mask, dim=1).long() * mask |
|
|
|
|
|
class BertModelV2(BertModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.embeddings = BertEmbeddingsV2(config) |
|
|
|
|
|
class BertForMaskedLMV2(BertForMaskedLM): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = sequence_output[:, :, 0:24] |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
effective_batch_size = input_shape[0] |
|
|
|
|
|
if self.config.pad_token_id is None: |
|
raise ValueError("The PAD token should be defined for generation") |
|
|
|
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) |
|
dummy_token = torch.full( |
|
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device |
|
) |
|
input_ids = torch.cat([input_ids, dummy_token], dim=1) |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask} |