qilowoq commited on
Commit
0155d37
1 Parent(s): 67edcf0

Upload model

Browse files
Files changed (3) hide show
  1. AbLang_bert_model.py +158 -0
  2. config.json +9 -7
  3. pytorch_model.bin +2 -2
AbLang_bert_model.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.bert.modeling_bert import BertEncoder, BertPooler, BertEmbeddings, BaseModelOutputWithPoolingAndCrossAttentions
2
+ from transformers import BertModel
3
+ import torch
4
+
5
+ class BertEmbeddingsV2(BertEmbeddings):
6
+ def __init__(self, config):
7
+ super().__init__(config)
8
+ self.pad_token_id = config.pad_token_id
9
+ self.word_embeddings = torch.nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.pad_token_id)
10
+ self.position_embeddings = torch.nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) # here padding_idx is always 0
11
+ self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
12
+ self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
13
+
14
+ def forward(self, input_ids=None, pos_tag_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0):
15
+ inputs_embeds = self.word_embeddings(input_ids)
16
+ position_ids = self.create_position_ids_from_input_ids(input_ids)
17
+ position_embeddings = self.position_embeddings(position_ids)
18
+ embeddings = inputs_embeds + position_embeddings
19
+ return self.dropout(self.LayerNorm(embeddings))
20
+
21
+ def create_position_ids_from_input_ids(self, input_ids):
22
+ mask = input_ids.ne(self.pad_token_id).int()
23
+ return torch.cumsum(mask, dim=1).long() * mask
24
+
25
+
26
+ class BertModelV2(BertModel):
27
+ def __init__(self, config):
28
+ super().__init__(config)
29
+ self.config = config
30
+ self.embeddings = BertEmbeddingsV2(config)
31
+ self.encoder = BertEncoder(config)
32
+ self.pooler = BertPooler(config) if config.add_pooling_layer else None
33
+ self.init_weights()
34
+
35
+ def forward(
36
+ self,
37
+ input_ids=None,
38
+ attention_mask=None,
39
+ token_type_ids=None,
40
+ pos_tag_ids=None,
41
+ position_ids=None,
42
+ head_mask=None,
43
+ inputs_embeds=None,
44
+ encoder_hidden_states=None,
45
+ encoder_attention_mask=None,
46
+ past_key_values=None,
47
+ use_cache=None,
48
+ output_attentions=None,
49
+ output_hidden_states=None,
50
+ return_dict=None,
51
+ ):
52
+ r"""
53
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
54
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
55
+ the model is configured as a decoder.
56
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
57
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
58
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
59
+ - 1 for tokens that are **not masked**,
60
+ - 0 for tokens that are **masked**.
61
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
62
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
63
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
64
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
65
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
66
+ use_cache (:obj:`bool`, `optional`):
67
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
68
+ decoding (see :obj:`past_key_values`).
69
+ """
70
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
71
+ output_hidden_states = (
72
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
73
+ )
74
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
75
+
76
+ if self.config.is_decoder:
77
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
78
+ else:
79
+ use_cache = False
80
+
81
+ if input_ids is not None and inputs_embeds is not None:
82
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
83
+ elif input_ids is not None:
84
+ input_shape = input_ids.size()
85
+ batch_size, seq_length = input_shape
86
+ elif inputs_embeds is not None:
87
+ input_shape = inputs_embeds.size()[:-1]
88
+ batch_size, seq_length = input_shape
89
+ else:
90
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
91
+
92
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
93
+
94
+ # past_key_values_length
95
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
96
+
97
+ if attention_mask is None:
98
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
99
+ if token_type_ids is None:
100
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
101
+
102
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
103
+ # ourselves in which case we just need to make it broadcastable to all heads.
104
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
105
+
106
+ # If a 2D or 3D attention mask is provided for the cross-attention
107
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
108
+ if self.config.is_decoder and encoder_hidden_states is not None:
109
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
110
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
111
+ if encoder_attention_mask is None:
112
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
113
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
114
+ else:
115
+ encoder_extended_attention_mask = None
116
+
117
+ # Prepare head mask if needed
118
+ # 1.0 in head_mask indicate we keep the head
119
+ # attention_probs has shape bsz x n_heads x N x N
120
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
121
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
122
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
123
+
124
+ embedding_output = self.embeddings(
125
+ input_ids=input_ids,
126
+ position_ids=position_ids,
127
+ token_type_ids=token_type_ids,
128
+ pos_tag_ids=pos_tag_ids,
129
+ inputs_embeds=inputs_embeds,
130
+ past_key_values_length=past_key_values_length,
131
+ )
132
+ encoder_outputs = self.encoder(
133
+ embedding_output,
134
+ attention_mask=extended_attention_mask,
135
+ head_mask=head_mask,
136
+ encoder_hidden_states=encoder_hidden_states,
137
+ encoder_attention_mask=encoder_extended_attention_mask,
138
+ past_key_values=past_key_values,
139
+ use_cache=use_cache,
140
+ output_attentions=output_attentions,
141
+ output_hidden_states=output_hidden_states,
142
+ return_dict=return_dict,
143
+ )
144
+ sequence_output = encoder_outputs[0]
145
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
146
+
147
+ if not return_dict:
148
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
149
+
150
+ return BaseModelOutputWithPoolingAndCrossAttentions(
151
+ last_hidden_state=sequence_output,
152
+ pooler_output=pooled_output,
153
+ past_key_values=encoder_outputs.past_key_values,
154
+ hidden_states=encoder_outputs.hidden_states,
155
+ attentions=encoder_outputs.attentions,
156
+ cross_attentions=encoder_outputs.cross_attentions,
157
+ )
158
+
config.json CHANGED
@@ -1,14 +1,13 @@
1
  {
2
- "_name_or_path": "ablang-test",
3
  "architectures": [
4
- "AbLang"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "auto_map": {
8
- "AutoConfig": "config.AbLangConfig",
9
- "AutoModel": "model.AbLang"
10
  },
11
- "chain": "heavy",
12
  "hidden_act": "gelu",
13
  "hidden_dropout_prob": 0.1,
14
  "hidden_size": 768,
@@ -19,8 +18,11 @@
19
  "model_type": "bert",
20
  "num_attention_heads": 12,
21
  "num_hidden_layers": 12,
22
- "ptid": 21,
 
23
  "torch_dtype": "float32",
24
- "transformers_version": "4.26.1",
 
 
25
  "vocab_size": 24
26
  }
 
1
  {
2
+ "add_pooling_layer": false,
3
  "architectures": [
4
+ "BertModelV2"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "auto_map": {
8
+ "AutoModel": "AbLang_bert_model.BertModelV2"
 
9
  },
10
+ "classifier_dropout": null,
11
  "hidden_act": "gelu",
12
  "hidden_dropout_prob": 0.1,
13
  "hidden_size": 768,
 
18
  "model_type": "bert",
19
  "num_attention_heads": 12,
20
  "num_hidden_layers": 12,
21
+ "pad_token_id": 21,
22
+ "position_embedding_type": "absolute",
23
  "torch_dtype": "float32",
24
+ "transformers_version": "4.28.1",
25
+ "type_vocab_size": 2,
26
+ "use_cache": true,
27
  "vocab_size": 24
28
  }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dec3268da263e5c21085a7e736c81b521da2662822c5c86d4024c7e558a1b669
3
- size 340855773
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae9d0ea3772a3dd43f2d7600dcb8ca6264fed3d59f6c73a1a98df223e6a11a16
3
+ size 340860389