--- base_model: BAAI/bge-m3 language: - en - ru license: mit pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # Model for English and Russian This is a truncated version of [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). This model has only English and Russian tokens left in the vocabulary. Thus making it 1.5 smaller than the original model while producing the same embeddings. The model has been truncated in [this notebook](https://colab.research.google.com/drive/19IFjWpJpxQie1gtHSvDeoKk7CQtpy6bT?usp=sharing). ## FAQ ### Generate Embedding for text ```python tokenizer = XLMRobertaTokenizer.from_pretrained('qilowoq/bge-m3-en-ru') model = XLMRobertaModel.from_pretrained('qilowoq/bge-m3-en-ru') sentences = ["This is an example sentence", "Это пример предложения"] with torch.no_grad(): embeddings = new_model(**tokenizer(sentences, return_tensors="pt", padding=True, truncation=True)).pooler_output ``` ## Acknowledgement Thanks to the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc. Thanks to the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [Pyserini](https://github.com/castorini/pyserini). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge-m3, title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation}, author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu}, year={2024}, eprint={2402.03216}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```