--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5539 - Accuracy: 0.8169 - F1: 0.8741 - Precision: 0.8329 - Recall: 0.9196 - Matthews Correlation: 0.5504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------------------:| | 0.5215 | 1.0 | 535 | 0.4659 | 0.7747 | 0.8514 | 0.7826 | 0.9334 | 0.4284 | | 0.3554 | 2.0 | 1070 | 0.4588 | 0.8073 | 0.8646 | 0.8403 | 0.8904 | 0.5339 | | 0.2373 | 3.0 | 1605 | 0.5539 | 0.8169 | 0.8741 | 0.8329 | 0.9196 | 0.5504 | | 0.1736 | 4.0 | 2140 | 0.7879 | 0.8111 | 0.8723 | 0.8187 | 0.9334 | 0.5321 | | 0.1293 | 5.0 | 2675 | 0.8469 | 0.8102 | 0.8699 | 0.8265 | 0.9182 | 0.5324 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3