--- license: gpl-3.0 widget: - text: 宵凉百念集孤灯,暗雨鸣廊睡未能。生计坐怜秋一叶,归程冥想浪千层。寒心国事浑难料,堆眼官资信可憎。此去梦中应不忘,顺承门内近觚棱。 pipeline_tag: text-classification --- 使用方法如下: ```python from transformers import BertTokenizer, BertForSequenceClassification import torch # 加载已训练的模型和分词器 model_path = 'qixun/tangsong_poem_classify' tokenizer = BertTokenizer.from_pretrained(model_path) model = BertForSequenceClassification.from_pretrained(model_path) # 预处理函数 def preprocess_text(text): inputs = tokenizer(text, padding='max_length', truncation=True, max_length=128, return_tensors='pt') return inputs # 分类函数 def classify_text(text): model.eval() # 切换到评估模式 inputs = preprocess_text(text) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=1) predicted_label = torch.argmax(probabilities, dim=1).item() return predicted_label, probabilities # 示例文本 text = "宵凉百念集孤灯,暗雨鸣廊睡未能。生计坐怜秋一叶,归程冥想浪千层。寒心国事浑难料,堆眼官资信可憎。此去梦中应不忘,顺承门内近觚棱。" # 调用分类函数 predicted_label, probabilities = classify_text(text) # 输出结果 print(f"预测标签: {predicted_label}") print(f"概率分布: {probabilities}") ``` label_0代表唐诗风格 label_1代表宋诗风格