--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - whisper-event - generated_from_trainer datasets: - facebook/voxpopuli metrics: - wer model-index: - name: WhisperForSpokenNER results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: facebook/voxpopuli de+es+fr+nl type: facebook/voxpopuli config: de+es+fr+nl split: None metrics: - name: Wer type: wer value: 0.059877955758962625 --- # WhisperForSpokenNER This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the facebook/voxpopuli de+es+fr+nl dataset. It achieves the following results on the evaluation set: - Loss: 0.4253 - F1 Score: 0.7984 - Label F1: 0.8971 - Wer: 0.0599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Label F1 | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.4435 | 0.36 | 200 | 0.4357 | 0.4513 | 0.7168 | 0.0599 | | 0.4309 | 0.71 | 400 | 0.4306 | 0.6751 | 0.8354 | 0.0599 | | 0.4235 | 1.07 | 600 | 0.4282 | 0.6722 | 0.8548 | 0.0599 | | 0.4267 | 1.43 | 800 | 0.4269 | 0.7073 | 0.8455 | 0.0599 | | 0.4254 | 1.79 | 1000 | 0.4264 | 0.7273 | 0.8678 | 0.0599 | | 0.4264 | 2.14 | 1200 | 0.4264 | 0.7398 | 0.8780 | 0.0599 | | 0.4206 | 2.5 | 1400 | 0.4262 | 0.7206 | 0.8583 | 0.0599 | | 0.4232 | 2.86 | 1600 | 0.4260 | 0.7410 | 0.8685 | 0.0599 | | 0.4249 | 3.22 | 1800 | 0.4255 | 0.7603 | 0.8926 | 0.0599 | | 0.4239 | 3.57 | 2000 | 0.4256 | 0.7631 | 0.8835 | 0.0599 | | 0.4213 | 3.93 | 2200 | 0.4255 | 0.7692 | 0.8988 | 0.0599 | | 0.4213 | 4.29 | 2400 | 0.4256 | 0.7769 | 0.8926 | 0.0599 | | 0.4244 | 4.65 | 2600 | 0.4253 | 0.7711 | 0.8996 | 0.0599 | | 0.4234 | 5.0 | 2800 | 0.4254 | 0.7386 | 0.8797 | 0.0599 | | 0.4222 | 5.36 | 3000 | 0.4252 | 0.7917 | 0.9 | 0.0599 | | 0.4239 | 5.72 | 3200 | 0.4254 | 0.7801 | 0.8963 | 0.0599 | | 0.4201 | 6.08 | 3400 | 0.4254 | 0.7950 | 0.8954 | 0.0599 | | 0.4194 | 6.43 | 3600 | 0.4253 | 0.7851 | 0.9008 | 0.0599 | | 0.4203 | 6.79 | 3800 | 0.4252 | 0.7934 | 0.9091 | 0.0599 | | 0.4214 | 7.15 | 4000 | 0.4253 | 0.8050 | 0.9046 | 0.0599 | | 0.4206 | 7.51 | 4200 | 0.4253 | 0.8 | 0.9 | 0.0599 | | 0.4205 | 7.86 | 4400 | 0.4253 | 0.8050 | 0.9129 | 0.0599 | | 0.4207 | 8.22 | 4600 | 0.4253 | 0.7951 | 0.9016 | 0.0599 | | 0.4218 | 8.58 | 4800 | 0.4253 | 0.7984 | 0.8971 | 0.0599 | | 0.4201 | 8.94 | 5000 | 0.4253 | 0.7984 | 0.8971 | 0.0599 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1