qnguyen3 commited on
Commit
4c96187
1 Parent(s): 67e119d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +463 -0
README.md ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ ## Model Description
6
+
7
+ Master is a collection of LLMs trained using human-collected seed questions and regenerate the answers with a mixture of high performance Open-source LLMs.
8
+
9
+ **Master-Yi-9B** is trained using the ORPO techniques. The model shows strong abilities in reasoning on coding and math questions.
10
+
11
+ **Main Version**: [Here](https://huggingface.co/qnguyen3/Master-Yi-9B)
12
+
13
+
14
+ ![img](https://huggingface.co/qnguyen3/Master-Yi-9B/resolve/main/Master-Yi-9B.webp)
15
+
16
+ ## Prompt Template
17
+
18
+ ```
19
+ <|im_start|>system
20
+ You are a helpful AI assistant.<|im_end|>
21
+ <|im_start|>user
22
+ What is the meaning of life?<|im_end|>
23
+ <|im_start|>assistant
24
+ ```
25
+
26
+ ## Examples
27
+
28
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630430583926de1f7ec62c6b/E27JmdRAMrHQacM50-lBk.png)
29
+
30
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630430583926de1f7ec62c6b/z0HS4bxHFQzPe0gZlvCzZ.png)
31
+
32
+ ## Inference Code
33
+
34
+ ```python
35
+ from transformers import AutoModelForCausalLM, AutoTokenizer
36
+ import torch
37
+ device = "cuda" # the device to load the model onto
38
+
39
+ model = AutoModelForCausalLM.from_pretrained(
40
+ "vilm/VinaLlama2-14B",
41
+ torch_dtype='auto',
42
+ device_map="auto"
43
+ )
44
+ tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B")
45
+
46
+ prompt = "What is the mearning of life?"
47
+ messages = [
48
+ {"role": "system", "content": "You are a helpful AI assistant."},
49
+ {"role": "user", "content": prompt}
50
+ ]
51
+ text = tokenizer.apply_chat_template(
52
+ messages,
53
+ tokenize=False,
54
+ add_generation_prompt=True
55
+ )
56
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
57
+
58
+ generated_ids = model.generate(
59
+ model_inputs.input_ids,
60
+ max_new_tokens=1024,
61
+ eos_token_id=tokenizer.eos_token_id,
62
+ temperature=0.25,
63
+ )
64
+ generated_ids = [
65
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
66
+ ]
67
+
68
+ response = tokenizer.batch_decode(generated_ids)[0]
69
+ print(response)
70
+ ```
71
+
72
+ ## Benchmarks
73
+
74
+ Nous Benchmark:
75
+
76
+ | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
77
+ |---------------------------------------------------|------:|------:|---------:|-------:|------:|
78
+ |[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)| 43.55| 71.48| 48.54| 41.43| 51.25|
79
+
80
+ ```
81
+ ### AGIEval
82
+ | Task |Version| Metric |Value| |Stderr|
83
+ |------------------------------|------:|--------|----:|---|-----:|
84
+ |agieval_aqua_rat | 0|acc |35.83|± | 3.01|
85
+ | | |acc_norm|31.89|± | 2.93|
86
+ |agieval_logiqa_en | 0|acc |38.25|± | 1.91|
87
+ | | |acc_norm|37.79|± | 1.90|
88
+ |agieval_lsat_ar | 0|acc |23.04|± | 2.78|
89
+ | | |acc_norm|20.43|± | 2.66|
90
+ |agieval_lsat_lr | 0|acc |48.04|± | 2.21|
91
+ | | |acc_norm|42.75|± | 2.19|
92
+ |agieval_lsat_rc | 0|acc |61.34|± | 2.97|
93
+ | | |acc_norm|52.79|± | 3.05|
94
+ |agieval_sat_en | 0|acc |79.13|± | 2.84|
95
+ | | |acc_norm|72.33|± | 3.12|
96
+ |agieval_sat_en_without_passage| 0|acc |44.17|± | 3.47|
97
+ | | |acc_norm|42.72|± | 3.45|
98
+ |agieval_sat_math | 0|acc |52.27|± | 3.38|
99
+ | | |acc_norm|47.73|± | 3.38|
100
+
101
+ Average: 43.55%
102
+
103
+ ### GPT4All
104
+ | Task |Version| Metric |Value| |Stderr|
105
+ |-------------|------:|--------|----:|---|-----:|
106
+ |arc_challenge| 0|acc |54.95|± | 1.45|
107
+ | | |acc_norm|58.70|± | 1.44|
108
+ |arc_easy | 0|acc |82.28|± | 0.78|
109
+ | | |acc_norm|81.10|± | 0.80|
110
+ |boolq | 1|acc |86.15|± | 0.60|
111
+ |hellaswag | 0|acc |59.16|± | 0.49|
112
+ | | |acc_norm|77.53|± | 0.42|
113
+ |openbookqa | 0|acc |37.40|± | 2.17|
114
+ | | |acc_norm|44.00|± | 2.22|
115
+ |piqa | 0|acc |79.00|± | 0.95|
116
+ | | |acc_norm|80.25|± | 0.93|
117
+ |winogrande | 0|acc |72.61|± | 1.25|
118
+
119
+ Average: 71.48%
120
+
121
+ ### TruthfulQA
122
+ | Task |Version|Metric|Value| |Stderr|
123
+ |-------------|------:|------|----:|---|-----:|
124
+ |truthfulqa_mc| 1|mc1 |33.05|± | 1.65|
125
+ | | |mc2 |48.54|± | 1.54|
126
+
127
+ Average: 48.54%
128
+
129
+ ### Bigbench
130
+ | Task |Version| Metric |Value| |Stderr|
131
+ |------------------------------------------------|------:|---------------------|----:|---|-----:|
132
+ |bigbench_causal_judgement | 0|multiple_choice_grade|54.74|± | 3.62|
133
+ |bigbench_date_understanding | 0|multiple_choice_grade|68.02|± | 2.43|
134
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|40.31|± | 3.06|
135
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|30.36|± | 2.43|
136
+ | | |exact_str_match | 2.23|± | 0.78|
137
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|26.00|± | 1.96|
138
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.71|± | 1.53|
139
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.00|± | 2.87|
140
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|35.00|± | 2.14|
141
+ |bigbench_navigate | 0|multiple_choice_grade|58.40|± | 1.56|
142
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|61.80|± | 1.09|
143
+ |bigbench_ruin_names | 0|multiple_choice_grade|42.41|± | 2.34|
144
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|31.56|± | 1.47|
145
+ |bigbench_snarks | 0|multiple_choice_grade|55.25|± | 3.71|
146
+ |bigbench_sports_understanding | 0|multiple_choice_grade|69.37|± | 1.47|
147
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|27.70|± | 1.42|
148
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.36|± | 1.16|
149
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|14.69|± | 0.85|
150
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.00|± | 2.87|
151
+
152
+ Average: 41.43%
153
+
154
+ Average score: 51.25%
155
+ ```
156
+
157
+ OpenLLM Benchmark:
158
+
159
+ | Model |ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|Average|
160
+ |---------------------------------------------------|---:|--------:|----:|---------:|---------:|----:|------:|
161
+ |[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)|61.6| 79.89|69.95| 48.59| 77.35|67.48| 67.48|
162
+
163
+ ```
164
+ ### ARC
165
+ | Task |Version| Metric | Value | |Stderr|
166
+ |-------------|------:|--------------------|-------------|---|------|
167
+ |arc_challenge| 1|acc,none | 0.59| | |
168
+ | | |acc_stderr,none | 0.01| | |
169
+ | | |acc_norm,none | 0.62| | |
170
+ | | |acc_norm_stderr,none| 0.01| | |
171
+ | | |alias |arc_challenge| | |
172
+
173
+ Average: 61.6%
174
+
175
+ ### HellaSwag
176
+ | Task |Version| Metric | Value | |Stderr|
177
+ |---------|------:|--------------------|---------|---|------|
178
+ |hellaswag| 1|acc,none | 0.61| | |
179
+ | | |acc_stderr,none | 0| | |
180
+ | | |acc_norm,none | 0.80| | |
181
+ | | |acc_norm_stderr,none| 0| | |
182
+ | | |alias |hellaswag| | |
183
+
184
+ Average: 79.89%
185
+
186
+ ### MMLU
187
+ | Task |Version| Metric | Value | |Stderr|
188
+ |----------------------------------------|-------|---------------|---------------------------------------|---|------|
189
+ |mmlu |N/A |acc,none | 0.7| | |
190
+ | | |acc_stderr,none| 0| | |
191
+ | | |alias |mmlu | | |
192
+ |mmlu_abstract_algebra | 0|alias | - abstract_algebra | | |
193
+ | | |acc,none |0.46 | | |
194
+ | | |acc_stderr,none|0.05 | | |
195
+ |mmlu_anatomy | 0|alias | - anatomy | | |
196
+ | | |acc,none |0.64 | | |
197
+ | | |acc_stderr,none|0.04 | | |
198
+ |mmlu_astronomy | 0|alias | - astronomy | | |
199
+ | | |acc,none |0.77 | | |
200
+ | | |acc_stderr,none|0.03 | | |
201
+ |mmlu_business_ethics | 0|alias | - business_ethics | | |
202
+ | | |acc,none |0.76 | | |
203
+ | | |acc_stderr,none|0.04 | | |
204
+ |mmlu_clinical_knowledge | 0|alias | - clinical_knowledge | | |
205
+ | | |acc,none |0.71 | | |
206
+ | | |acc_stderr,none|0.03 | | |
207
+ |mmlu_college_biology | 0|alias | - college_biology | | |
208
+ | | |acc,none |0.82 | | |
209
+ | | |acc_stderr,none|0.03 | | |
210
+ |mmlu_college_chemistry | 0|alias | - college_chemistry | | |
211
+ | | |acc,none |0.52 | | |
212
+ | | |acc_stderr,none|0.05 | | |
213
+ |mmlu_college_computer_science | 0|alias | - college_computer_science | | |
214
+ | | |acc,none |0.56 | | |
215
+ | | |acc_stderr,none|0.05 | | |
216
+ |mmlu_college_mathematics | 0|alias | - college_mathematics | | |
217
+ | | |acc,none |0.44 | | |
218
+ | | |acc_stderr,none|0.05 | | |
219
+ |mmlu_college_medicine | 0|alias | - college_medicine | | |
220
+ | | |acc,none |0.72 | | |
221
+ | | |acc_stderr,none|0.03 | | |
222
+ |mmlu_college_physics | 0|alias | - college_physics | | |
223
+ | | |acc,none |0.45 | | |
224
+ | | |acc_stderr,none|0.05 | | |
225
+ |mmlu_computer_security | 0|alias | - computer_security | | |
226
+ | | |acc,none |0.81 | | |
227
+ | | |acc_stderr,none|0.04 | | |
228
+ |mmlu_conceptual_physics | 0|alias | - conceptual_physics | | |
229
+ | | |acc,none |0.74 | | |
230
+ | | |acc_stderr,none|0.03 | | |
231
+ |mmlu_econometrics | 0|alias | - econometrics | | |
232
+ | | |acc,none |0.65 | | |
233
+ | | |acc_stderr,none|0.04 | | |
234
+ |mmlu_electrical_engineering | 0|alias | - electrical_engineering | | |
235
+ | | |acc,none |0.72 | | |
236
+ | | |acc_stderr,none|0.04 | | |
237
+ |mmlu_elementary_mathematics | 0|alias | - elementary_mathematics | | |
238
+ | | |acc,none |0.62 | | |
239
+ | | |acc_stderr,none|0.02 | | |
240
+ |mmlu_formal_logic | 0|alias | - formal_logic | | |
241
+ | | |acc,none |0.57 | | |
242
+ | | |acc_stderr,none|0.04 | | |
243
+ |mmlu_global_facts | 0|alias | - global_facts | | |
244
+ | | |acc,none |0.46 | | |
245
+ | | |acc_stderr,none|0.05 | | |
246
+ |mmlu_high_school_biology | 0|alias | - high_school_biology | | |
247
+ | | |acc,none |0.86 | | |
248
+ | | |acc_stderr,none|0.02 | | |
249
+ |mmlu_high_school_chemistry | 0|alias | - high_school_chemistry | | |
250
+ | | |acc,none |0.67 | | |
251
+ | | |acc_stderr,none|0.03 | | |
252
+ |mmlu_high_school_computer_science | 0|alias | - high_school_computer_science | | |
253
+ | | |acc,none |0.84 | | |
254
+ | | |acc_stderr,none|0.04 | | |
255
+ |mmlu_high_school_european_history | 0|alias | - high_school_european_history | | |
256
+ | | |acc,none |0.82 | | |
257
+ | | |acc_stderr,none|0.03 | | |
258
+ |mmlu_high_school_geography | 0|alias | - high_school_geography | | |
259
+ | | |acc,none |0.86 | | |
260
+ | | |acc_stderr,none|0.02 | | |
261
+ |mmlu_high_school_government_and_politics| 0|alias | - high_school_government_and_politics| | |
262
+ | | |acc,none |0.90 | | |
263
+ | | |acc_stderr,none|0.02 | | |
264
+ |mmlu_high_school_macroeconomics | 0|alias | - high_school_macroeconomics | | |
265
+ | | |acc,none |0.75 | | |
266
+ | | |acc_stderr,none|0.02 | | |
267
+ |mmlu_high_school_mathematics | 0|alias | - high_school_mathematics | | |
268
+ | | |acc,none |0.43 | | |
269
+ | | |acc_stderr,none|0.03 | | |
270
+ |mmlu_high_school_microeconomics | 0|alias | - high_school_microeconomics | | |
271
+ | | |acc,none |0.86 | | |
272
+ | | |acc_stderr,none|0.02 | | |
273
+ |mmlu_high_school_physics | 0|alias | - high_school_physics | | |
274
+ | | |acc,none |0.45 | | |
275
+ | | |acc_stderr,none|0.04 | | |
276
+ |mmlu_high_school_psychology | 0|alias | - high_school_psychology | | |
277
+ | | |acc,none |0.87 | | |
278
+ | | |acc_stderr,none|0.01 | | |
279
+ |mmlu_high_school_statistics | 0|alias | - high_school_statistics | | |
280
+ | | |acc,none |0.68 | | |
281
+ | | |acc_stderr,none|0.03 | | |
282
+ |mmlu_high_school_us_history | 0|alias | - high_school_us_history | | |
283
+ | | |acc,none |0.85 | | |
284
+ | | |acc_stderr,none|0.02 | | |
285
+ |mmlu_high_school_world_history | 0|alias | - high_school_world_history | | |
286
+ | | |acc,none |0.85 | | |
287
+ | | |acc_stderr,none|0.02 | | |
288
+ |mmlu_human_aging | 0|alias | - human_aging | | |
289
+ | | |acc,none |0.76 | | |
290
+ | | |acc_stderr,none|0.03 | | |
291
+ |mmlu_human_sexuality | 0|alias | - human_sexuality | | |
292
+ | | |acc,none |0.78 | | |
293
+ | | |acc_stderr,none|0.04 | | |
294
+ |mmlu_humanities |N/A |alias | - humanities | | |
295
+ | | |acc,none |0.63 | | |
296
+ | | |acc_stderr,none|0.01 | | |
297
+ |mmlu_international_law | 0|alias | - international_law | | |
298
+ | | |acc,none |0.79 | | |
299
+ | | |acc_stderr,none|0.04 | | |
300
+ |mmlu_jurisprudence | 0|alias | - jurisprudence | | |
301
+ | | |acc,none |0.79 | | |
302
+ | | |acc_stderr,none|0.04 | | |
303
+ |mmlu_logical_fallacies | 0|alias | - logical_fallacies | | |
304
+ | | |acc,none |0.80 | | |
305
+ | | |acc_stderr,none|0.03 | | |
306
+ |mmlu_machine_learning | 0|alias | - machine_learning | | |
307
+ | | |acc,none |0.52 | | |
308
+ | | |acc_stderr,none|0.05 | | |
309
+ |mmlu_management | 0|alias | - management | | |
310
+ | | |acc,none |0.83 | | |
311
+ | | |acc_stderr,none|0.04 | | |
312
+ |mmlu_marketing | 0|alias | - marketing | | |
313
+ | | |acc,none |0.89 | | |
314
+ | | |acc_stderr,none|0.02 | | |
315
+ |mmlu_medical_genetics | 0|alias | - medical_genetics | | |
316
+ | | |acc,none |0.78 | | |
317
+ | | |acc_stderr,none|0.04 | | |
318
+ |mmlu_miscellaneous | 0|alias | - miscellaneous | | |
319
+ | | |acc,none |0.85 | | |
320
+ | | |acc_stderr,none|0.01 | | |
321
+ |mmlu_moral_disputes | 0|alias | - moral_disputes | | |
322
+ | | |acc,none |0.75 | | |
323
+ | | |acc_stderr,none|0.02 | | |
324
+ |mmlu_moral_scenarios | 0|alias | - moral_scenarios | | |
325
+ | | |acc,none |0.48 | | |
326
+ | | |acc_stderr,none|0.02 | | |
327
+ |mmlu_nutrition | 0|alias | - nutrition | | |
328
+ | | |acc,none |0.77 | | |
329
+ | | |acc_stderr,none|0.02 | | |
330
+ |mmlu_other |N/A |alias | - other | | |
331
+ | | |acc,none |0.75 | | |
332
+ | | |acc_stderr,none|0.01 | | |
333
+ |mmlu_philosophy | 0|alias | - philosophy | | |
334
+ | | |acc,none |0.78 | | |
335
+ | | |acc_stderr,none|0.02 | | |
336
+ |mmlu_prehistory | 0|alias | - prehistory | | |
337
+ | | |acc,none |0.77 | | |
338
+ | | |acc_stderr,none|0.02 | | |
339
+ |mmlu_professional_accounting | 0|alias | - professional_accounting | | |
340
+ | | |acc,none |0.57 | | |
341
+ | | |acc_stderr,none|0.03 | | |
342
+ |mmlu_professional_law | 0|alias | - professional_law | | |
343
+ | | |acc,none |0.50 | | |
344
+ | | |acc_stderr,none|0.01 | | |
345
+ |mmlu_professional_medicine | 0|alias | - professional_medicine | | |
346
+ | | |acc,none |0.71 | | |
347
+ | | |acc_stderr,none|0.03 | | |
348
+ |mmlu_professional_psychology | 0|alias | - professional_psychology | | |
349
+ | | |acc,none |0.73 | | |
350
+ | | |acc_stderr,none|0.02 | | |
351
+ |mmlu_public_relations | 0|alias | - public_relations | | |
352
+ | | |acc,none |0.76 | | |
353
+ | | |acc_stderr,none|0.04 | | |
354
+ |mmlu_security_studies | 0|alias | - security_studies | | |
355
+ | | |acc,none |0.78 | | |
356
+ | | |acc_stderr,none|0.03 | | |
357
+ |mmlu_social_sciences |N/A |alias | - social_sciences | | |
358
+ | | |acc,none |0.81 | | |
359
+ | | |acc_stderr,none|0.01 | | |
360
+ |mmlu_sociology | 0|alias | - sociology | | |
361
+ | | |acc,none |0.86 | | |
362
+ | | |acc_stderr,none|0.02 | | |
363
+ |mmlu_stem |N/A |alias | - stem | | |
364
+ | | |acc,none |0.65 | | |
365
+ | | |acc_stderr,none|0.01 | | |
366
+ |mmlu_us_foreign_policy | 0|alias | - us_foreign_policy | | |
367
+ | | |acc,none |0.92 | | |
368
+ | | |acc_stderr,none|0.03 | | |
369
+ |mmlu_virology | 0|alias | - virology | | |
370
+ | | |acc,none |0.58 | | |
371
+ | | |acc_stderr,none|0.04 | | |
372
+ |mmlu_world_religions | 0|alias | - world_religions | | |
373
+ | | |acc,none |0.82 | | |
374
+ | | |acc_stderr,none|0.03 | | |
375
+
376
+ Average: 69.95%
377
+
378
+ ### TruthfulQA
379
+ | Task |Version| Metric | Value | |Stderr|
380
+ |--------------|-------|-----------------------|-----------------|---|------|
381
+ |truthfulqa |N/A |bleu_acc,none | 0.45| | |
382
+ | | |bleu_acc_stderr,none | 0.02| | |
383
+ | | |rouge1_acc,none | 0.45| | |
384
+ | | |rouge1_acc_stderr,none | 0.02| | |
385
+ | | |rouge2_diff,none | 0.92| | |
386
+ | | |rouge2_diff_stderr,none| 1.07| | |
387
+ | | |bleu_max,none | 23.77| | |
388
+ | | |bleu_max_stderr,none | 0.81| | |
389
+ | | |rouge2_acc,none | 0.38| | |
390
+ | | |rouge2_acc_stderr,none | 0.02| | |
391
+ | | |acc,none | 0.41| | |
392
+ | | |acc_stderr,none | 0.01| | |
393
+ | | |rougeL_diff,none | 1.57| | |
394
+ | | |rougeL_diff_stderr,none| 0.93| | |
395
+ | | |rougeL_acc,none | 0.46| | |
396
+ | | |rougeL_acc_stderr,none | 0.02| | |
397
+ | | |bleu_diff,none | 1.38| | |
398
+ | | |bleu_diff_stderr,none | 0.75| | |
399
+ | | |rouge2_max,none | 33.01| | |
400
+ | | |rouge2_max_stderr,none | 1.05| | |
401
+ | | |rouge1_diff,none | 1.72| | |
402
+ | | |rouge1_diff_stderr,none| 0.92| | |
403
+ | | |rougeL_max,none | 45.25| | |
404
+ | | |rougeL_max_stderr,none | 0.92| | |
405
+ | | |rouge1_max,none | 48.29| | |
406
+ | | |rouge1_max_stderr,none | 0.90| | |
407
+ | | |alias |truthfulqa | | |
408
+ |truthfulqa_gen| 3|bleu_max,none | 23.77| | |
409
+ | | |bleu_max_stderr,none | 0.81| | |
410
+ | | |bleu_acc,none | 0.45| | |
411
+ | | |bleu_acc_stderr,none | 0.02| | |
412
+ | | |bleu_diff,none | 1.38| | |
413
+ | | |bleu_diff_stderr,none | 0.75| | |
414
+ | | |rouge1_max,none | 48.29| | |
415
+ | | |rouge1_max_stderr,none | 0.90| | |
416
+ | | |rouge1_acc,none | 0.45| | |
417
+ | | |rouge1_acc_stderr,none | 0.02| | |
418
+ | | |rouge1_diff,none | 1.72| | |
419
+ | | |rouge1_diff_stderr,none| 0.92| | |
420
+ | | |rouge2_max,none | 33.01| | |
421
+ | | |rouge2_max_stderr,none | 1.05| | |
422
+ | | |rouge2_acc,none | 0.38| | |
423
+ | | |rouge2_acc_stderr,none | 0.02| | |
424
+ | | |rouge2_diff,none | 0.92| | |
425
+ | | |rouge2_diff_stderr,none| 1.07| | |
426
+ | | |rougeL_max,none | 45.25| | |
427
+ | | |rougeL_max_stderr,none | 0.92| | |
428
+ | | |rougeL_acc,none | 0.46| | |
429
+ | | |rougeL_acc_stderr,none | 0.02| | |
430
+ | | |rougeL_diff,none | 1.57| | |
431
+ | | |rougeL_diff_stderr,none| 0.93| | |
432
+ | | |alias | - truthfulqa_gen| | |
433
+ |truthfulqa_mc1| 2|acc,none | 0.33| | |
434
+ | | |acc_stderr,none | 0.02| | |
435
+ | | |alias | - truthfulqa_mc1| | |
436
+ |truthfulqa_mc2| 2|acc,none | 0.49| | |
437
+ | | |acc_stderr,none | 0.02| | |
438
+ | | |alias | - truthfulqa_mc2| | |
439
+
440
+ Average: 48.59%
441
+
442
+ ### Winogrande
443
+ | Task |Version| Metric | Value | |Stderr|
444
+ |----------|------:|---------------|----------|---|------|
445
+ |winogrande| 1|acc,none | 0.77| | |
446
+ | | |acc_stderr,none| 0.01| | |
447
+ | | |alias |winogrande| | |
448
+
449
+ Average: 77.35%
450
+
451
+ ### GSM8K
452
+ |Task |Version| Metric |Value| |Stderr|
453
+ |-----|------:|-----------------------------------|-----|---|------|
454
+ |gsm8k| 3|exact_match,strict-match | 0.67| | |
455
+ | | |exact_match_stderr,strict-match | 0.01| | |
456
+ | | |exact_match,flexible-extract | 0.68| | |
457
+ | | |exact_match_stderr,flexible-extract| 0.01| | |
458
+ | | |alias |gsm8k| | |
459
+
460
+ Average: 67.48%
461
+
462
+ Average score: 67.48%
463
+ ```