File size: 2,777 Bytes
a7a270a
 
 
 
f2e5e8f
a7a270a
 
 
 
 
 
 
 
 
300ee88
 
3b648e8
300ee88
 
 
 
 
 
 
 
 
 
 
 
a7a270a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e5e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: other
tags:
- generated_from_trainer
base_model: KnutJaegersberg/Qwen-1_8B-Llamafied
model-index:
- name: qwen-1.8b-vi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# Quan-1.8b

Qwen-1.8B finetuned on bilingual English-Vietnamese Data. 

## Prompt Template
ChatML, same as VinaLlama

```
<|im_start|>system
Bạn là một trợ lí AI hữu ích. Hãy trả lời người dùng một cách chính xác.
<|im_end|>
<|im_start|>user
Hello world!<|im_end|>
<|im_start|>assistant
```

This model is a fine-tuned version of [KnutJaegersberg/Qwen-1_8B-Llamafied](https://huggingface.co/KnutJaegersberg/Qwen-1_8B-Llamafied) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8096

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8123        | 1.02  | 2356 | 0.8183          |
| 0.7358        | 2.02  | 4713 | 0.7790          |
| 0.6379        | 3.02  | 7071 | 0.7822          |
| 0.5762        | 3.94  | 9252 | 0.8096          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_qnguyen3__quan-1.8b-chat)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |45.91|
|AI2 Reasoning Challenge (25-Shot)|39.08|
|HellaSwag (10-Shot)              |62.37|
|MMLU (5-Shot)                    |44.09|
|TruthfulQA (0-shot)              |43.15|
|Winogrande (5-shot)              |59.27|
|GSM8k (5-shot)                   |27.52|