qninhdt commited on
Commit
d344462
1 Parent(s): 3122555

Upload 14 files

Browse files
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # cmmd-pytorch
2
+
3
+ (Unofficial) PyTorch implementation of CLIP Maximum Mean Discrepancy (CMMD) for evaluating image generation models, proposed in [Rethinking FID: Towards a Better Evaluation Metric for Image Generation](https://arxiv.org/abs/2401.09603). CMMD stands out to be a better metric than FID and tries to mitigate the longstanding issues of FID.
4
+
5
+ This implementation is a super simple PyTorch port of the [original codebase](https://github.com/google-research/google-research/tree/master/cmmd). I have only focused on the JAX and TensorFlow specific bits and replaced them PyTorch. Some differences:
6
+
7
+ * The original codebase relies on [`scenic`](https://github.com/google-research/scenic) for computing CLIP embeddings. This repository uses [`transformers`](https://github.com/huggingface/transformers).
8
+ * For the data loading, the original codebase uses TensorFlow, this one uses PyTorch `Dataset` and `DataLoader`.
9
+
10
+ ## Setup
11
+
12
+ First, install PyTorch following instructions from the [official website](https://pytorch.org/).
13
+
14
+ Then install the depdencies:
15
+
16
+ ```bash
17
+ pip install -r requirements.txt
18
+ ```
19
+
20
+ ## Running
21
+
22
+ ```bash
23
+ python main.py /path/to/reference/images /path/to/eval/images --batch_size=32 --max_count=30000
24
+ ```
25
+
26
+ A working example command:
27
+
28
+ ```bash
29
+ python main.py reference_images generated_images --batch_size=1
30
+ ```
31
+
32
+ It should output:
33
+
34
+ ```bash
35
+ The CMMD value is: 7.696
36
+ ```
37
+
38
+ This is the same as the original codebase, so, that confirms the implementation correctness 🤗
39
+
40
+ > [!TIP]
41
+ > GPU execution is supported when a GPU is available.
42
+
43
+ ## Results
44
+
45
+ Below, we report the CMMD metric for some popular pipelines on the COCO-30k dataset, as commonly used by the community. CMMD, like FID, is better when it's lower.
46
+
47
+ | **Pipeline** | **Inference Steps** | **Resolution** | **CMMD** |
48
+ |:------------:|:-------------------:|:--------------:|:--------:|
49
+ | [`stabilityai/stable-diffusion-xl-base-1.0`](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | 30 | 1024x1024 | 0.696 |
50
+ | [`segmind/SSD-1B`](https://huggingface.co/segmind/SSD-1B) | 30 | 1024x1024 | 0.669 |
51
+ | [`stabilityai/sdxl-turbo`](https://huggingface.co/stabilityai/sdxl-turbo) | 1 | 512x512 | 0.548 |
52
+ | [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) | 50 | 512x512 | 0.582 |
53
+ | [`PixArt-alpha/PixArt-XL-2-1024-MS`](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS) | 20 | 1024x1024 | 1.140 |
54
+ | [`SPRIGHT-T2I/spright-t2i-sd2`](https://huggingface.co/SPRIGHT-T2I/spright-t2i-sd2) | 50 | 768x768 | 0.512 |
55
+
56
+ **Notes**:
57
+
58
+ * For SDXL Turbo, `guidance_scale` is set to 0 following the [official guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl_turbo) in `diffusers`.
59
+ * For all other pipelines, default `guidace_scale` was used. Refer to the official pipeline documentation pages [here](https://huggingface.co/docs/diffusers/main/en/index) for more details.
60
+
61
+ > [!CAUTION]
62
+ > As per the CMMD authors, with models producing high-quality/high-resolution images, COCO images don't seem to be a good reference set (they are of pretty small resolution). This might help explain why SD v1.5 has a better CMMD than SDXL.
63
+
64
+ ## Obtaining CMMD for your pipelines
65
+
66
+ One can refer to the `generate_images.py` script that generates images from the [COCO-30k randomly sampled captions](https://huggingface.co/datasets/sayakpaul/sample-datasets/raw/main/coco_30k_randomly_sampled_2014_val.csv) using `diffusers`.
67
+
68
+ Once the images are generated, run:
69
+
70
+ ```bash
71
+ python main.py /path/to/reference/images /path/to/generated/images --batch_size=32 --max_count=30000
72
+ ```
73
+
74
+ Reference images are COCO-30k images and can be downloaded from [here](https://huggingface.co/datasets/sayakpaul/coco-30-val-2014).
75
+
76
+ Pre-computed embeddings for the COCO-30k images can be found [here](https://huggingface.co/datasets/sayakpaul/coco-30-val-2014/blob/main/ref_embs_coco_30k.npy).
77
+
78
+ To use the pre-computed reference embeddings, run:
79
+
80
+ ```bash
81
+ python main.py None /path/to/generated/images ref_embed_file=ref_embs.npy --batch_size=32 --max_count=30000
82
+ ```
83
+
84
+ ## Acknowledgements
85
+
86
+ Thanks to Sadeep Jayasumana (first author of CMMD) for all the helpful discussions.
87
+
88
+
distance.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Memory-efficient MMD implementation in JAX."""
17
+
18
+ import torch
19
+
20
+ # The bandwidth parameter for the Gaussian RBF kernel. See the paper for more
21
+ # details.
22
+ _SIGMA = 10
23
+ # The following is used to make the metric more human readable. See the paper
24
+ # for more details.
25
+ _SCALE = 1000
26
+
27
+
28
+ def mmd(x, y):
29
+ """Memory-efficient MMD implementation in JAX.
30
+
31
+ This implements the minimum-variance/biased version of the estimator described
32
+ in Eq.(5) of
33
+ https://jmlr.csail.mit.edu/papers/volume13/gretton12a/gretton12a.pdf.
34
+ As described in Lemma 6's proof in that paper, the unbiased estimate and the
35
+ minimum-variance estimate for MMD are almost identical.
36
+
37
+ Note that the first invocation of this function will be considerably slow due
38
+ to JAX JIT compilation.
39
+
40
+ Args:
41
+ x: The first set of embeddings of shape (n, embedding_dim).
42
+ y: The second set of embeddings of shape (n, embedding_dim).
43
+
44
+ Returns:
45
+ The MMD distance between x and y embedding sets.
46
+ """
47
+ x = torch.from_numpy(x)
48
+ y = torch.from_numpy(y)
49
+
50
+ x_sqnorms = torch.diag(torch.matmul(x, x.T))
51
+ y_sqnorms = torch.diag(torch.matmul(y, y.T))
52
+
53
+ gamma = 1 / (2 * _SIGMA**2)
54
+ k_xx = torch.mean(
55
+ torch.exp(-gamma * (-2 * torch.matmul(x, x.T) + torch.unsqueeze(x_sqnorms, 1) + torch.unsqueeze(x_sqnorms, 0)))
56
+ )
57
+ k_xy = torch.mean(
58
+ torch.exp(-gamma * (-2 * torch.matmul(x, y.T) + torch.unsqueeze(x_sqnorms, 1) + torch.unsqueeze(y_sqnorms, 0)))
59
+ )
60
+ k_yy = torch.mean(
61
+ torch.exp(-gamma * (-2 * torch.matmul(y, y.T) + torch.unsqueeze(y_sqnorms, 1) + torch.unsqueeze(y_sqnorms, 0)))
62
+ )
63
+
64
+ return _SCALE * (k_xx + k_yy - 2 * k_xy)
embedding.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Embedding models used in the CMMD calculation."""
17
+
18
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
19
+ import torch
20
+ import numpy as np
21
+
22
+ _CLIP_MODEL_NAME = "openai/clip-vit-large-patch14-336"
23
+ _CUDA_AVAILABLE = torch.cuda.is_available()
24
+
25
+
26
+ def _resize_bicubic(images, size):
27
+ images = torch.from_numpy(images.transpose(0, 3, 1, 2))
28
+ images = torch.nn.functional.interpolate(images, size=(size, size), mode="bicubic")
29
+ images = images.permute(0, 2, 3, 1).numpy()
30
+ return images
31
+
32
+
33
+ class ClipEmbeddingModel:
34
+ """CLIP image embedding calculator."""
35
+
36
+ def __init__(self):
37
+ self.image_processor = CLIPImageProcessor.from_pretrained(_CLIP_MODEL_NAME)
38
+
39
+ self._model = CLIPVisionModelWithProjection.from_pretrained(_CLIP_MODEL_NAME).eval()
40
+ if _CUDA_AVAILABLE:
41
+ self._model = self._model.cuda()
42
+
43
+ self.input_image_size = self.image_processor.crop_size["height"]
44
+
45
+ @torch.no_grad()
46
+ def embed(self, images):
47
+ """Computes CLIP embeddings for the given images.
48
+
49
+ Args:
50
+ images: An image array of shape (batch_size, height, width, 3). Values are
51
+ in range [0, 1].
52
+
53
+ Returns:
54
+ Embedding array of shape (batch_size, embedding_width).
55
+ """
56
+
57
+ images = _resize_bicubic(images, self.input_image_size)
58
+ inputs = self.image_processor(
59
+ images=images,
60
+ do_normalize=True,
61
+ do_center_crop=False,
62
+ do_resize=False,
63
+ do_rescale=False,
64
+ return_tensors="pt",
65
+ )
66
+ if _CUDA_AVAILABLE:
67
+ inputs = {k: v.to("cuda") for k, v in inputs.items()}
68
+
69
+ image_embs = self._model(**inputs).image_embeds.cpu()
70
+ image_embs /= torch.linalg.norm(image_embs, axis=-1, keepdims=True)
71
+ return image_embs
generate_images.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import DiffusionPipeline
2
+ from concurrent.futures import ThreadPoolExecutor
3
+ import pandas as pd
4
+ import argparse
5
+ import torch
6
+ import os
7
+
8
+
9
+ ALL_CKPTS = [
10
+ "runwayml/stable-diffusion-v1-5",
11
+ "segmind/SSD-1B",
12
+ "PixArt-alpha/PixArt-XL-2-1024-MS",
13
+ "stabilityai/stable-diffusion-xl-base-1.0",
14
+ "stabilityai/sdxl-turbo",
15
+ ]
16
+ SEED = 2024
17
+
18
+
19
+ def load_dataframe():
20
+ dataframe = pd.read_csv(
21
+ "https://huggingface.co/datasets/sayakpaul/sample-datasets/raw/main/coco_30k_randomly_sampled_2014_val.csv"
22
+ )
23
+ return dataframe
24
+
25
+
26
+ def load_pipeline(args):
27
+ if "runway" in args.pipeline_id:
28
+ pipeline = DiffusionPipeline.from_pretrained(
29
+ args.pipeline_id, torch_dtype=torch.float16, safety_checker=None
30
+ ).to("cuda")
31
+ else:
32
+ pipeline = DiffusionPipeline.from_pretrained(args.pipeline_id, torch_dtype=torch.float16).to("cuda")
33
+ pipeline.set_progress_bar_config(disable=True)
34
+ return pipeline
35
+
36
+
37
+ def generate_images(args, dataframe, pipeline):
38
+ all_images = []
39
+ for i in range(0, len(dataframe), args.chunk_size):
40
+ if "sdxl-turbo" not in args.pipeline_id:
41
+ images = pipeline(
42
+ dataframe.iloc[i : i + args.chunk_size]["caption"].tolist(),
43
+ num_inference_steps=args.num_inference_steps,
44
+ generator=torch.manual_seed(SEED),
45
+ ).images
46
+ else:
47
+ images = pipeline(
48
+ dataframe.iloc[i : i + args.chunk_size]["caption"].tolist(),
49
+ num_inference_steps=args.num_inference_steps,
50
+ generator=torch.manual_seed(SEED),
51
+ guidance_scale=0.0,
52
+ ).images
53
+ all_images.extend(images)
54
+ return all_images
55
+
56
+
57
+ def serialize_image(image, path):
58
+ image.save(path)
59
+
60
+
61
+ if __name__ == "__main__":
62
+ parser = argparse.ArgumentParser()
63
+ parser.add_argument("--pipeline_id", default="runwayml/stable-diffusion-v1-5", type=str, choices=ALL_CKPTS)
64
+ parser.add_argument("--num_inference_steps", default=30, type=int)
65
+ parser.add_argument("--chunk_size", default=2, type=int)
66
+ parser.add_argument("--root_img_path", default="sdv15", type=str)
67
+ parser.add_argument("--num_workers", type=int, default=4)
68
+ args = parser.parse_args()
69
+
70
+ dataset = load_dataframe()
71
+ pipeline = load_pipeline(args)
72
+ images = generate_images(args, dataset, pipeline)
73
+ image_paths = [os.path.join(args.root_img_path, f"{i}.jpg") for i in range(len(images))]
74
+
75
+ if not os.path.exists(args.root_img_path):
76
+ os.makedirs(args.root_img_path)
77
+
78
+ with ThreadPoolExecutor(max_workers=args.num_workers) as executor:
79
+ executor.map(serialize_image, images, image_paths)
generated_images/glowing_512_2.png ADDED
generated_images/glowing_512_2_copy.png ADDED
generated_images/glowing_512_2_copy_2.png ADDED
io_util.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """IO utilities."""
17
+
18
+ import glob
19
+ from torch.utils.data import Dataset, DataLoader
20
+ import numpy as np
21
+ from PIL import Image
22
+ import tqdm
23
+
24
+
25
+ class CMMDDataset(Dataset):
26
+ def __init__(self, path, reshape_to, max_count=-1):
27
+ self.path = path
28
+ self.reshape_to = reshape_to
29
+
30
+ self.max_count = max_count
31
+ img_path_list = self._get_image_list()
32
+ if max_count > 0:
33
+ img_path_list = img_path_list[:max_count]
34
+ self.img_path_list = img_path_list
35
+
36
+ def __len__(self):
37
+ return len(self.img_path_list)
38
+
39
+ def _get_image_list(self):
40
+ ext_list = ["png", "jpg", "jpeg"]
41
+ image_list = []
42
+ for ext in ext_list:
43
+ image_list.extend(glob.glob(f"{self.path}/*{ext}"))
44
+ image_list.extend(glob.glob(f"{self.path}/*.{ext.upper()}"))
45
+ # Sort the list to ensure a deterministic output.
46
+ image_list.sort()
47
+ return image_list
48
+
49
+ def _center_crop_and_resize(self, im, size):
50
+ w, h = im.size
51
+ l = min(w, h)
52
+ top = (h - l) // 2
53
+ left = (w - l) // 2
54
+ box = (left, top, left + l, top + l)
55
+ im = im.crop(box)
56
+ # Note that the following performs anti-aliasing as well.
57
+ return im.resize((size, size), resample=Image.BICUBIC) # pytype: disable=module-attr
58
+
59
+ def _read_image(self, path, size):
60
+ im = Image.open(path)
61
+ if size > 0:
62
+ im = self._center_crop_and_resize(im, size)
63
+ return np.asarray(im).astype(np.float32)
64
+
65
+ def __getitem__(self, idx):
66
+ img_path = self.img_path_list[idx]
67
+
68
+ x = self._read_image(img_path, self.reshape_to)
69
+ if x.ndim == 3:
70
+ return x
71
+ elif x.ndim == 2:
72
+ # Convert grayscale to RGB by duplicating the channel dimension.
73
+ return np.tile(x[Ellipsis, np.newaxis], (1, 1, 3))
74
+
75
+
76
+ def compute_embeddings_for_dir(
77
+ img_dir,
78
+ embedding_model,
79
+ batch_size,
80
+ max_count=-1,
81
+ ):
82
+ """Computes embeddings for the images in the given directory.
83
+
84
+ This drops the remainder of the images after batching with the provided
85
+ batch_size to enable efficient computation on TPUs. This usually does not
86
+ affect results assuming we have a large number of images in the directory.
87
+
88
+ Args:
89
+ img_dir: Directory containing .jpg or .png image files.
90
+ embedding_model: The embedding model to use.
91
+ batch_size: Batch size for the embedding model inference.
92
+ max_count: Max number of images in the directory to use.
93
+
94
+ Returns:
95
+ Computed embeddings of shape (num_images, embedding_dim).
96
+ """
97
+ dataset = CMMDDataset(img_dir, reshape_to=embedding_model.input_image_size, max_count=max_count)
98
+ count = len(dataset)
99
+ print(f"Calculating embeddings for {count} images from {img_dir}.")
100
+
101
+ dataloader = DataLoader(dataset, batch_size=batch_size)
102
+
103
+ all_embs = []
104
+ for batch in tqdm.tqdm(dataloader, total=count // batch_size):
105
+ image_batch = batch.numpy()
106
+
107
+ # Normalize to the [0, 1] range.
108
+ image_batch = image_batch / 255.0
109
+
110
+ if np.min(image_batch) < 0 or np.max(image_batch) > 1:
111
+ raise ValueError(
112
+ "Image values are expected to be in [0, 1]. Found:" f" [{np.min(image_batch)}, {np.max(image_batch)}]."
113
+ )
114
+
115
+ # Compute the embeddings using a pmapped function.
116
+ embs = np.asarray(
117
+ embedding_model.embed(image_batch)
118
+ ) # The output has shape (num_devices, batch_size, embedding_dim).
119
+ all_embs.append(embs)
120
+
121
+ all_embs = np.concatenate(all_embs, axis=0)
122
+
123
+ return all_embs
main.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """The main entry point for the CMMD calculation."""
17
+
18
+ from absl import app
19
+ from absl import flags
20
+ import distance
21
+ import embedding
22
+ import io_util
23
+ import numpy as np
24
+
25
+
26
+ _BATCH_SIZE = flags.DEFINE_integer("batch_size", 32, "Batch size for embedding generation.")
27
+ _MAX_COUNT = flags.DEFINE_integer("max_count", -1, "Maximum number of images to read from each directory.")
28
+ _REF_EMBED_FILE = flags.DEFINE_string(
29
+ "ref_embed_file", None, "Path to the pre-computed embedding file for the reference images."
30
+ )
31
+
32
+
33
+ def compute_cmmd(ref_dir, eval_dir, ref_embed_file=None, batch_size=32, max_count=-1):
34
+ """Calculates the CMMD distance between reference and eval image sets.
35
+
36
+ Args:
37
+ ref_dir: Path to the directory containing reference images.
38
+ eval_dir: Path to the directory containing images to be evaluated.
39
+ ref_embed_file: Path to the pre-computed embedding file for the reference images.
40
+ batch_size: Batch size used in the CLIP embedding calculation.
41
+ max_count: Maximum number of images to use from each directory. A
42
+ non-positive value reads all images available except for the images
43
+ dropped due to batching.
44
+
45
+ Returns:
46
+ The CMMD value between the image sets.
47
+ """
48
+ if ref_dir and ref_embed_file:
49
+ raise ValueError("`ref_dir` and `ref_embed_file` both cannot be set at the same time.")
50
+ embedding_model = embedding.ClipEmbeddingModel()
51
+ if ref_embed_file is not None:
52
+ ref_embs = np.load(ref_embed_file).astype("float32")
53
+ else:
54
+ ref_embs = io_util.compute_embeddings_for_dir(ref_dir, embedding_model, batch_size, max_count).astype(
55
+ "float32"
56
+ )
57
+ eval_embs = io_util.compute_embeddings_for_dir(eval_dir, embedding_model, batch_size, max_count).astype("float32")
58
+ val = distance.mmd(ref_embs, eval_embs)
59
+ return val.numpy()
60
+
61
+
62
+ def main(argv):
63
+ if len(argv) != 3:
64
+ raise app.UsageError("Too few/too many command-line arguments.")
65
+ _, dir1, dir2 = argv
66
+ print(
67
+ "The CMMD value is: "
68
+ f" {compute_cmmd(dir1, dir2, _REF_EMBED_FILE.value, _BATCH_SIZE.value, _MAX_COUNT.value):.3f}"
69
+ )
70
+
71
+
72
+ if __name__ == "__main__":
73
+ app.run(main)
reference_images/glowing_512_1.png ADDED
reference_images/glowing_512_1_copy.png ADDED
reference_images/glowing_512_1_copy_2.png ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ transformers
2
+ accelerate
3
+ Pillow
4
+ tqdm
5
+ numpy
6
+ absl-py