File size: 7,002 Bytes
8bb3bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
"""Inference a pretrained model."""
import argparse
import os
import datasets # pylint: disable=unused-import
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (
get_dist_info,
init_dist,
load_checkpoint,
wrap_fp16_model,
)
from mmdet.apis import multi_gpu_test, single_gpu_test
from mmdet.datasets import (
build_dataloader,
build_dataset,
replace_ImageToTensor,
)
from mmdet.models import build_detector
MODEL_SERVER = "https://dl.cv.ethz.ch/bdd100k/det/models/"
def parse_args() -> argparse.Namespace:
"""Arguements definitions."""
parser = argparse.ArgumentParser(
description="MMDet test (and eval) a model"
)
parser.add_argument("config", help="test config file path")
parser.add_argument(
"--work-dir",
help="the directory to save the file containing evaluation metrics",
)
parser.add_argument(
"--fuse-conv-bn",
action="store_true",
help="Whether to fuse conv and bn, this will slightly increase"
"the inference speed",
)
parser.add_argument(
"--format-only",
action="store_true",
help="Format the output results without perform evaluation. It is"
"useful when you want to format the result to a specific format and "
"submit it to the test server",
)
parser.add_argument(
"--format-dir", help="directory where the outputs are saved."
)
parser.add_argument("--show", action="store_true", help="show results")
parser.add_argument(
"--show-dir", help="directory where painted images will be saved"
)
parser.add_argument(
"--show-score-thr",
type=float,
default=0.3,
help="score threshold (default: 0.3)",
)
parser.add_argument(
"--gpu-collect",
action="store_true",
help="whether to use gpu to collect results.",
)
parser.add_argument(
"--tmpdir",
help="tmp directory used for collecting results from multiple "
"workers, available when gpu-collect is not specified",
)
parser.add_argument(
"--cfg-options",
nargs="+",
action=DictAction,
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file. If the value to "
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
"Note that the quotation marks are necessary and that no white space "
"is allowed.",
)
parser.add_argument(
"--launcher",
choices=["none", "pytorch", "slurm", "mpi"],
default="none",
help="job launcher",
)
parser.add_argument("--local_rank", type=int, default=0)
args = parser.parse_args()
if "LOCAL_RANK" not in os.environ:
os.environ["LOCAL_RANK"] = str(args.local_rank)
return args
def main() -> None:
"""Main function for model inference."""
args = parse_args()
assert args.format_only or args.show or args.show_dir, (
"Please specify at least one operation (save/eval/format/show the "
"results / save the results) with the argument '--format-only', "
"'--show' or '--show-dir'"
)
cfg = Config.fromfile(args.config)
if cfg.load_from is None:
cfg_name = os.path.split(args.config)[-1].replace(".py", ".pth")
cfg.load_from = MODEL_SERVER + cfg_name
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get("cudnn_benchmark", False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
if cfg.model.get("neck"):
if isinstance(cfg.model.neck, list):
for neck_cfg in cfg.model.neck:
if neck_cfg.get("rfp_backbone"):
if neck_cfg.rfp_backbone.get("pretrained"):
neck_cfg.rfp_backbone.pretrained = None
elif cfg.model.neck.get("rfp_backbone"):
if cfg.model.neck.rfp_backbone.get("pretrained"):
cfg.model.neck.rfp_backbone.pretrained = None
# in case the test dataset is concatenated
samples_per_gpu = 1
if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True # type: ignore
samples_per_gpu = cfg.data.test.pop("samples_per_gpu", 1)
if samples_per_gpu > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.test.pipeline = replace_ImageToTensor( # type: ignore
cfg.data.test.pipeline # type: ignore
)
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
samples_per_gpu = max(
[ds_cfg.pop("samples_per_gpu", 1) for ds_cfg in cfg.data.test]
)
if samples_per_gpu > 1:
for ds_cfg in cfg.data.test:
ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)
# init distributed env first, since logger depends on the dist info.
if args.launcher == "none":
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
rank, _ = get_dist_info()
# build the dataloader
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False,
)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_detector(cfg.model, test_cfg=cfg.get("test_cfg"))
fp16_cfg = cfg.get("fp16", None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, cfg.load_from, map_location="cpu")
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if "CLASSES" in checkpoint.get("meta", {}):
model.CLASSES = checkpoint["meta"]["CLASSES"]
else:
model.CLASSES = dataset.CLASSES
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(
model, data_loader, args.show, args.show_dir, args.show_score_thr
)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
)
outputs = multi_gpu_test(
model, data_loader, args.tmpdir, args.gpu_collect
)
rank, _ = get_dist_info()
if rank == 0:
if args.format_only:
dataset.convert_format(outputs, args.format_dir)
if __name__ == "__main__":
main()
|