det / configs /_base_ /models /retinanet_r50_fpn.py
qninhdt's picture
Upload 83 files
8bb3bd1 verified
raw
history blame
1.91 kB
# model settings
model = dict(
type="RetinaNet",
backbone=dict(
type="ResNet",
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type="BN", requires_grad=True),
norm_eval=True,
style="pytorch",
init_cfg=dict(type="Pretrained", checkpoint="torchvision://resnet50"),
),
neck=dict(
type="FPN",
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs="on_input",
num_outs=5,
),
bbox_head=dict(
type="RetinaHead",
num_classes=10,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type="AnchorGenerator",
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128],
),
bbox_coder=dict(
type="DeltaXYWHBBoxCoder",
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0],
),
loss_cls=dict(
type="FocalLoss",
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0,
),
loss_bbox=dict(type="L1Loss", loss_weight=1.0),
),
# model training and testing settings
train_cfg=dict(
assigner=dict(
type="MaxIoUAssigner",
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1,
),
allowed_border=-1,
pos_weight=-1,
debug=False,
),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type="nms", iou_threshold=0.5),
max_per_img=100,
),
)