det / test.py
qninhdt's picture
Upload 83 files
8bb3bd1 verified
"""Inference a pretrained model."""
import argparse
import os
import datasets # pylint: disable=unused-import
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (
get_dist_info,
init_dist,
load_checkpoint,
wrap_fp16_model,
)
from mmdet.apis import multi_gpu_test, single_gpu_test
from mmdet.datasets import (
build_dataloader,
build_dataset,
replace_ImageToTensor,
)
from mmdet.models import build_detector
MODEL_SERVER = "https://dl.cv.ethz.ch/bdd100k/det/models/"
def parse_args() -> argparse.Namespace:
"""Arguements definitions."""
parser = argparse.ArgumentParser(
description="MMDet test (and eval) a model"
)
parser.add_argument("config", help="test config file path")
parser.add_argument(
"--work-dir",
help="the directory to save the file containing evaluation metrics",
)
parser.add_argument(
"--fuse-conv-bn",
action="store_true",
help="Whether to fuse conv and bn, this will slightly increase"
"the inference speed",
)
parser.add_argument(
"--format-only",
action="store_true",
help="Format the output results without perform evaluation. It is"
"useful when you want to format the result to a specific format and "
"submit it to the test server",
)
parser.add_argument(
"--format-dir", help="directory where the outputs are saved."
)
parser.add_argument("--show", action="store_true", help="show results")
parser.add_argument(
"--show-dir", help="directory where painted images will be saved"
)
parser.add_argument(
"--show-score-thr",
type=float,
default=0.3,
help="score threshold (default: 0.3)",
)
parser.add_argument(
"--gpu-collect",
action="store_true",
help="whether to use gpu to collect results.",
)
parser.add_argument(
"--tmpdir",
help="tmp directory used for collecting results from multiple "
"workers, available when gpu-collect is not specified",
)
parser.add_argument(
"--cfg-options",
nargs="+",
action=DictAction,
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file. If the value to "
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
"Note that the quotation marks are necessary and that no white space "
"is allowed.",
)
parser.add_argument(
"--launcher",
choices=["none", "pytorch", "slurm", "mpi"],
default="none",
help="job launcher",
)
parser.add_argument("--local_rank", type=int, default=0)
args = parser.parse_args()
if "LOCAL_RANK" not in os.environ:
os.environ["LOCAL_RANK"] = str(args.local_rank)
return args
def main() -> None:
"""Main function for model inference."""
args = parse_args()
assert args.format_only or args.show or args.show_dir, (
"Please specify at least one operation (save/eval/format/show the "
"results / save the results) with the argument '--format-only', "
"'--show' or '--show-dir'"
)
cfg = Config.fromfile(args.config)
if cfg.load_from is None:
cfg_name = os.path.split(args.config)[-1].replace(".py", ".pth")
cfg.load_from = MODEL_SERVER + cfg_name
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get("cudnn_benchmark", False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
if cfg.model.get("neck"):
if isinstance(cfg.model.neck, list):
for neck_cfg in cfg.model.neck:
if neck_cfg.get("rfp_backbone"):
if neck_cfg.rfp_backbone.get("pretrained"):
neck_cfg.rfp_backbone.pretrained = None
elif cfg.model.neck.get("rfp_backbone"):
if cfg.model.neck.rfp_backbone.get("pretrained"):
cfg.model.neck.rfp_backbone.pretrained = None
# in case the test dataset is concatenated
samples_per_gpu = 1
if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True # type: ignore
samples_per_gpu = cfg.data.test.pop("samples_per_gpu", 1)
if samples_per_gpu > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.test.pipeline = replace_ImageToTensor( # type: ignore
cfg.data.test.pipeline # type: ignore
)
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
samples_per_gpu = max(
[ds_cfg.pop("samples_per_gpu", 1) for ds_cfg in cfg.data.test]
)
if samples_per_gpu > 1:
for ds_cfg in cfg.data.test:
ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)
# init distributed env first, since logger depends on the dist info.
if args.launcher == "none":
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
rank, _ = get_dist_info()
# build the dataloader
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False,
)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_detector(cfg.model, test_cfg=cfg.get("test_cfg"))
fp16_cfg = cfg.get("fp16", None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, cfg.load_from, map_location="cpu")
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if "CLASSES" in checkpoint.get("meta", {}):
model.CLASSES = checkpoint["meta"]["CLASSES"]
else:
model.CLASSES = dataset.CLASSES
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(
model, data_loader, args.show, args.show_dir, args.show_score_thr
)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
)
outputs = multi_gpu_test(
model, data_loader, args.tmpdir, args.gpu_collect
)
rank, _ = get_dist_info()
if rank == 0:
if args.format_only:
dataset.convert_format(outputs, args.format_dir)
if __name__ == "__main__":
main()