"""Dataset settings.""" dataset_type = "BDD100KDetDataset" # pylint: disable=invalid-name data_root = "../data/bdd100k/" # pylint: disable=invalid-name # pylint: disable=invalid-name img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True ) crop_size = (720, 1280) train_pipeline = [ dict(type="Mosaic", img_scale=crop_size), dict(type="MixUp", img_scale=crop_size), dict(type="RandomFlip", flip_ratio=0.5), dict(type="Resize", img_scale=(1280, 720), ratio_range=(0.5, 1.5)), dict(type="RandomCrop", crop_size=crop_size, allow_negative_crop=True), dict(type="PhotoMetricDistortion"), dict(type="Normalize", **img_norm_cfg), dict(type="Pad", size_divisor=32), dict(type="DefaultFormatBundle"), dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels"]), ] train_dataset = dict( type='MultiImageMixDataset', dataset=dict( type=dataset_type, ann_file=data_root + "jsons/det_train_cocofmt.json", img_prefix=data_root + "images/100k/train", pipeline=[ dict(type="LoadImageFromFile"), dict(type='LoadAnnotations', with_bbox=True) ], filter_empty_gt=True, ), pipeline=train_pipeline, ) test_pipeline = [ dict(type="LoadImageFromFile"), dict( type="MultiScaleFlipAug", img_scale=(1280, 720), flip=False, transforms=[ dict(type="Resize", keep_ratio=True), dict(type="RandomFlip"), dict(type="Normalize", **img_norm_cfg), dict(type="Pad", size_divisor=32), dict(type="ImageToTensor", keys=["img"]), dict(type="Collect", keys=["img"]), ], ), ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=train_dataset, val=dict( type=dataset_type, ann_file=data_root + "jsons/det_val_cocofmt.json", img_prefix=data_root + "images/100k/val", pipeline=test_pipeline, ), test=dict( type=dataset_type, ann_file=data_root + "jsons/det_val_cocofmt.json", img_prefix=data_root + "images/100k/val", pipeline=test_pipeline, ), ) evaluation = dict(interval=1, metric="bbox")