cc
Browse files- scripts/build_cyclegan_dataset.py +6 -0
- swim/autoencoder.py +247 -0
- swim/blocks.py +53 -11
- swim/codeblock.py +1 -1
- swim/encoder.py +0 -90
- train.py +67 -3
scripts/build_cyclegan_dataset.py
CHANGED
@@ -71,6 +71,9 @@ def build_cyclegan_dataset(swim_dir: str, output_dir: str, type: str, no_night:
|
|
71 |
)
|
72 |
else:
|
73 |
for label in tqdm(train_labels, desc="train"):
|
|
|
|
|
|
|
74 |
if label["timeofday"] == "night":
|
75 |
os.system(
|
76 |
f"cp {os.path.join(swim_dir, 'train', 'images', label['name'])} {os.path.join(output_dir, 'trainB', label['name'])}"
|
@@ -81,6 +84,9 @@ def build_cyclegan_dataset(swim_dir: str, output_dir: str, type: str, no_night:
|
|
81 |
)
|
82 |
|
83 |
for label in tqdm(val_labels, desc="val"):
|
|
|
|
|
|
|
84 |
if label["timeofday"] == "night":
|
85 |
os.system(
|
86 |
f"cp {os.path.join(swim_dir, 'val', 'images', label['name'])} {os.path.join(output_dir, 'testB', label['name'])}"
|
|
|
71 |
)
|
72 |
else:
|
73 |
for label in tqdm(train_labels, desc="train"):
|
74 |
+
if label["weather"] != "clear":
|
75 |
+
continue
|
76 |
+
|
77 |
if label["timeofday"] == "night":
|
78 |
os.system(
|
79 |
f"cp {os.path.join(swim_dir, 'train', 'images', label['name'])} {os.path.join(output_dir, 'trainB', label['name'])}"
|
|
|
84 |
)
|
85 |
|
86 |
for label in tqdm(val_labels, desc="val"):
|
87 |
+
if label["weather"] != "clear":
|
88 |
+
continue
|
89 |
+
|
90 |
if label["timeofday"] == "night":
|
91 |
os.system(
|
92 |
f"cp {os.path.join(swim_dir, 'val', 'images', label['name'])} {os.path.join(output_dir, 'testB', label['name'])}"
|
swim/autoencoder.py
CHANGED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
from .blocks import (
|
8 |
+
ResnetBlock,
|
9 |
+
AttentionBlock,
|
10 |
+
GroupNorm,
|
11 |
+
UpSampleBlock,
|
12 |
+
DownSampleBlock,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class Autoencoder(nn.Module):
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
channels: int,
|
21 |
+
channel_multipliers: List[int],
|
22 |
+
n_resnet_blocks: int,
|
23 |
+
in_channels: int,
|
24 |
+
z_channels: int,
|
25 |
+
emb_channels: int,
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
self.encoder = Encoder(
|
29 |
+
channels=channels,
|
30 |
+
channel_multipliers=channel_multipliers,
|
31 |
+
n_resnet_blocks=n_resnet_blocks,
|
32 |
+
in_channels=in_channels,
|
33 |
+
z_channels=z_channels,
|
34 |
+
)
|
35 |
+
self.decoder = Decoder(
|
36 |
+
channels=channels,
|
37 |
+
channel_multipliers=channel_multipliers,
|
38 |
+
n_resnet_blocks=n_resnet_blocks,
|
39 |
+
out_channels=in_channels,
|
40 |
+
z_channels=z_channels,
|
41 |
+
)
|
42 |
+
# Convolution to map from embedding space to
|
43 |
+
# quantized embedding space moments (mean and log variance)
|
44 |
+
self.quant_conv = nn.Conv2d(2 * z_channels, 2 * emb_channels, 1)
|
45 |
+
# Convolution to map from quantized embedding space back to
|
46 |
+
# embedding space
|
47 |
+
self.post_quant_conv = nn.Conv2d(emb_channels, z_channels, 1)
|
48 |
+
|
49 |
+
def encode(self, img: torch.Tensor) -> "GaussianDistribution":
|
50 |
+
# Get embeddings with shape `[batch_size, z_channels * 2, z_height, z_height]`
|
51 |
+
z = self.encoder(img)
|
52 |
+
# Get the moments in the quantized embedding space
|
53 |
+
moments = self.quant_conv(z)
|
54 |
+
# Return the distribution
|
55 |
+
return GaussianDistribution(moments)
|
56 |
+
|
57 |
+
def decode(self, z: torch.Tensor):
|
58 |
+
# Map to embedding space from the quantized representation
|
59 |
+
z = self.post_quant_conv(z)
|
60 |
+
# Decode the image of shape `[batch_size, channels, height, width]`
|
61 |
+
return self.decoder(z)
|
62 |
+
|
63 |
+
def forward(self, x: torch.Tensor, sample_posterior: bool = False):
|
64 |
+
posterior = self.encode(x)
|
65 |
+
if sample_posterior:
|
66 |
+
z = posterior.sample()
|
67 |
+
else:
|
68 |
+
z = posterior.mode()
|
69 |
+
decoded_x = self.decode(z)
|
70 |
+
return decoded_x, posterior
|
71 |
+
|
72 |
+
|
73 |
+
class Encoder(nn.Module):
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
*,
|
77 |
+
channels: int,
|
78 |
+
channel_multipliers: List[int],
|
79 |
+
n_resnet_blocks: int,
|
80 |
+
in_channels: int,
|
81 |
+
z_channels: int
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
# Number of blocks of different resolutions.
|
86 |
+
# The resolution is halved at the end each top level block
|
87 |
+
n_resolutions = len(channel_multipliers)
|
88 |
+
|
89 |
+
# Initial $3 \times 3$ convolution layer that maps the image to `channels`
|
90 |
+
self.conv_in = nn.Conv2d(in_channels, channels, 3, stride=1, padding=1)
|
91 |
+
|
92 |
+
# Number of channels in each top level block
|
93 |
+
channels_list = [m * channels for m in [1] + channel_multipliers]
|
94 |
+
|
95 |
+
# List of top-level blocks
|
96 |
+
self.down = nn.ModuleList()
|
97 |
+
# Create top-level blocks
|
98 |
+
for i in range(n_resolutions):
|
99 |
+
# Each top level block consists of multiple ResNet Blocks and down-sampling
|
100 |
+
resnet_blocks = nn.ModuleList()
|
101 |
+
# Add ResNet Blocks
|
102 |
+
for _ in range(n_resnet_blocks):
|
103 |
+
resnet_blocks.append(ResnetBlock(channels, channels_list[i + 1]))
|
104 |
+
channels = channels_list[i + 1]
|
105 |
+
# Top-level block
|
106 |
+
down = nn.Module()
|
107 |
+
down.block = resnet_blocks
|
108 |
+
# Down-sampling at the end of each top level block except the last
|
109 |
+
if i != n_resolutions - 1:
|
110 |
+
down.downsample = DownSampleBlock(channels)
|
111 |
+
else:
|
112 |
+
down.downsample = nn.Identity()
|
113 |
+
#
|
114 |
+
self.down.append(down)
|
115 |
+
|
116 |
+
# Final ResNet blocks with attention
|
117 |
+
self.mid = nn.Module()
|
118 |
+
self.mid.block_1 = ResnetBlock(channels, channels)
|
119 |
+
self.mid.attn_1 = AttentionBlock(channels)
|
120 |
+
self.mid.block_2 = ResnetBlock(channels, channels)
|
121 |
+
|
122 |
+
# Map to embedding space with a $3 \times 3$ convolution
|
123 |
+
self.norm_out = GroupNorm(channels)
|
124 |
+
self.conv_out = nn.Conv2d(channels, 2 * z_channels, 3, stride=1, padding=1)
|
125 |
+
|
126 |
+
def forward(self, img: torch.Tensor):
|
127 |
+
# Map to `channels` with the initial convolution
|
128 |
+
x = self.conv_in(img)
|
129 |
+
|
130 |
+
# Top-level blocks
|
131 |
+
for down in self.down:
|
132 |
+
# ResNet Blocks
|
133 |
+
for block in down.block:
|
134 |
+
x = block(x)
|
135 |
+
# Down-sampling
|
136 |
+
x = down.downsample(x)
|
137 |
+
|
138 |
+
# Final ResNet blocks with attention
|
139 |
+
x = self.mid.block_1(x)
|
140 |
+
x = self.mid.attn_1(x)
|
141 |
+
x = self.mid.block_2(x)
|
142 |
+
|
143 |
+
# Normalize and map to embedding space
|
144 |
+
x = self.norm_out(x)
|
145 |
+
x = F.silu(x)
|
146 |
+
x = self.conv_out(x)
|
147 |
+
|
148 |
+
return x
|
149 |
+
|
150 |
+
|
151 |
+
class Decoder(nn.Module):
|
152 |
+
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
*,
|
156 |
+
channels: int,
|
157 |
+
channel_multipliers: List[int],
|
158 |
+
n_resnet_blocks: int,
|
159 |
+
out_channels: int,
|
160 |
+
z_channels: int
|
161 |
+
):
|
162 |
+
super().__init__()
|
163 |
+
|
164 |
+
# Number of blocks of different resolutions.
|
165 |
+
# The resolution is halved at the end each top level block
|
166 |
+
num_resolutions = len(channel_multipliers)
|
167 |
+
|
168 |
+
# Number of channels in each top level block, in the reverse order
|
169 |
+
channels_list = [m * channels for m in channel_multipliers]
|
170 |
+
|
171 |
+
# Number of channels in the top-level block
|
172 |
+
channels = channels_list[-1]
|
173 |
+
|
174 |
+
# Initial $3 \times 3$ convolution layer that maps the embedding space to `channels`
|
175 |
+
self.conv_in = nn.Conv2d(z_channels, channels, 3, stride=1, padding=1)
|
176 |
+
|
177 |
+
# ResNet blocks with attention
|
178 |
+
self.mid = nn.Module()
|
179 |
+
self.mid.block_1 = ResnetBlock(channels, channels)
|
180 |
+
self.mid.attn_1 = AttentionBlock(channels)
|
181 |
+
self.mid.block_2 = ResnetBlock(channels, channels)
|
182 |
+
|
183 |
+
# List of top-level blocks
|
184 |
+
self.up = nn.ModuleList()
|
185 |
+
# Create top-level blocks
|
186 |
+
for i in reversed(range(num_resolutions)):
|
187 |
+
# Each top level block consists of multiple ResNet Blocks and up-sampling
|
188 |
+
resnet_blocks = nn.ModuleList()
|
189 |
+
# Add ResNet Blocks
|
190 |
+
for _ in range(n_resnet_blocks + 1):
|
191 |
+
resnet_blocks.append(ResnetBlock(channels, channels_list[i]))
|
192 |
+
channels = channels_list[i]
|
193 |
+
# Top-level block
|
194 |
+
up = nn.Module()
|
195 |
+
up.block = resnet_blocks
|
196 |
+
# Up-sampling at the end of each top level block except the first
|
197 |
+
if i != 0:
|
198 |
+
up.upsample = UpSampleBlock(channels)
|
199 |
+
else:
|
200 |
+
up.upsample = nn.Identity()
|
201 |
+
# Prepend to be consistent with the checkpoint
|
202 |
+
self.up.insert(0, up)
|
203 |
+
|
204 |
+
# Map to image space with a $3 \times 3$ convolution
|
205 |
+
self.norm_out = GroupNorm(channels)
|
206 |
+
self.conv_out = nn.Conv2d(channels, out_channels, 3, stride=1, padding=1)
|
207 |
+
|
208 |
+
def forward(self, z: torch.Tensor):
|
209 |
+
# Map to `channels` with the initial convolution
|
210 |
+
h = self.conv_in(z)
|
211 |
+
|
212 |
+
# ResNet blocks with attention
|
213 |
+
h = self.mid.block_1(h)
|
214 |
+
h = self.mid.attn_1(h)
|
215 |
+
h = self.mid.block_2(h)
|
216 |
+
|
217 |
+
# Top-level blocks
|
218 |
+
for up in reversed(self.up):
|
219 |
+
# ResNet Blocks
|
220 |
+
for block in up.block:
|
221 |
+
h = block(h)
|
222 |
+
# Up-sampling
|
223 |
+
h = up.upsample(h)
|
224 |
+
|
225 |
+
# Normalize and map to image space
|
226 |
+
h = self.norm_out(h)
|
227 |
+
h = F.silu(h)
|
228 |
+
img = self.conv_out(h)
|
229 |
+
|
230 |
+
return img
|
231 |
+
|
232 |
+
|
233 |
+
class GaussianDistribution:
|
234 |
+
def __init__(self, parameters: torch.Tensor):
|
235 |
+
# Split mean and log of variance
|
236 |
+
self.mean, log_var = torch.chunk(parameters, 2, dim=1)
|
237 |
+
# Clamp the log of variances
|
238 |
+
self.log_var = torch.clamp(log_var, -30.0, 20.0)
|
239 |
+
# Calculate standard deviation
|
240 |
+
self.std = torch.exp(0.5 * self.log_var)
|
241 |
+
|
242 |
+
def sample(self):
|
243 |
+
# Sample from the distribution
|
244 |
+
return self.mean + self.std * torch.randn_like(self.std)
|
245 |
+
|
246 |
+
def mode(self):
|
247 |
+
return self.mean
|
swim/blocks.py
CHANGED
@@ -36,23 +36,24 @@ class GroupNorm(nn.Module):
|
|
36 |
return self.group_norm(x)
|
37 |
|
38 |
|
39 |
-
class
|
40 |
def __init__(self, channels: int):
|
41 |
super().__init__()
|
42 |
self.conv = nn.Conv2d(channels, channels, 3, padding=1)
|
43 |
|
44 |
def forward(self, x: torch.Tensor):
|
45 |
-
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
46 |
return self.conv(x)
|
47 |
|
48 |
|
49 |
-
class
|
50 |
def __init__(self, channels: int):
|
51 |
super().__init__()
|
52 |
-
self.
|
53 |
|
54 |
def forward(self, x: torch.Tensor):
|
55 |
-
|
|
|
56 |
|
57 |
|
58 |
class TimestepBlock(nn.Module):
|
@@ -128,12 +129,6 @@ class ResnetBlock(nn.Module):
|
|
128 |
|
129 |
|
130 |
class AttentionBlock(nn.Module):
|
131 |
-
"""Attention mechanism similar to transformers but for CNNs, paper https://arxiv.org/abs/1805.08318
|
132 |
-
|
133 |
-
Args:
|
134 |
-
in_channels (int): Number of channels in the input tensor.
|
135 |
-
"""
|
136 |
-
|
137 |
def __init__(self, in_channels: int) -> None:
|
138 |
super().__init__()
|
139 |
|
@@ -183,3 +178,50 @@ class AttentionBlock(nn.Module):
|
|
183 |
|
184 |
# adding the identity to the output
|
185 |
return x + attention
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return self.group_norm(x)
|
37 |
|
38 |
|
39 |
+
class UpSampleBlock(nn.Module):
|
40 |
def __init__(self, channels: int):
|
41 |
super().__init__()
|
42 |
self.conv = nn.Conv2d(channels, channels, 3, padding=1)
|
43 |
|
44 |
def forward(self, x: torch.Tensor):
|
45 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
46 |
return self.conv(x)
|
47 |
|
48 |
|
49 |
+
class DownSampleBlock(nn.Module):
|
50 |
def __init__(self, channels: int):
|
51 |
super().__init__()
|
52 |
+
self.conv = nn.Conv2d(channels, channels, 3, stride=2, padding=0)
|
53 |
|
54 |
def forward(self, x: torch.Tensor):
|
55 |
+
x = F.pad(x, (0, 1, 0, 1), mode="constant", value=0)
|
56 |
+
return self.conv(x)
|
57 |
|
58 |
|
59 |
class TimestepBlock(nn.Module):
|
|
|
129 |
|
130 |
|
131 |
class AttentionBlock(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
def __init__(self, in_channels: int) -> None:
|
133 |
super().__init__()
|
134 |
|
|
|
178 |
|
179 |
# adding the identity to the output
|
180 |
return x + attention
|
181 |
+
|
182 |
+
|
183 |
+
class AttentionBlock(nn.Module):
|
184 |
+
def __init__(self, channels: int):
|
185 |
+
super().__init__()
|
186 |
+
# Group normalization
|
187 |
+
self.norm = GroupNorm(channels)
|
188 |
+
# Query, key and value mappings
|
189 |
+
self.q = nn.Conv2d(channels, channels, 1)
|
190 |
+
self.k = nn.Conv2d(channels, channels, 1)
|
191 |
+
self.v = nn.Conv2d(channels, channels, 1)
|
192 |
+
|
193 |
+
self.proj_out = nn.Conv2d(channels, channels, 1)
|
194 |
+
|
195 |
+
# Attention scaling factor
|
196 |
+
self.scale = channels**-0.5
|
197 |
+
|
198 |
+
def forward(self, x: torch.Tensor):
|
199 |
+
# Normalize `x`
|
200 |
+
x_norm = self.norm(x)
|
201 |
+
# Get query, key and vector embeddings
|
202 |
+
q = self.q(x_norm)
|
203 |
+
k = self.k(x_norm)
|
204 |
+
v = self.v(x_norm)
|
205 |
+
|
206 |
+
# Reshape to query, key and vector embeedings from
|
207 |
+
# `[batch_size, channels, height, width]` to
|
208 |
+
# `[batch_size, channels, height * width]`
|
209 |
+
b, c, h, w = q.shape
|
210 |
+
q = q.view(b, c, h * w)
|
211 |
+
k = k.view(b, c, h * w)
|
212 |
+
v = v.view(b, c, h * w)
|
213 |
+
|
214 |
+
# Compute $\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$
|
215 |
+
attn = torch.einsum("bci,bcj->bij", q, k) * self.scale
|
216 |
+
attn = F.softmax(attn, dim=2)
|
217 |
+
|
218 |
+
# Compute $\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$
|
219 |
+
out = torch.einsum("bij,bcj->bci", attn, v)
|
220 |
+
|
221 |
+
# Reshape back to `[batch_size, channels, height, width]`
|
222 |
+
out = out.view(b, c, h, w)
|
223 |
+
# Final $1 \times 1$ convolution layer
|
224 |
+
out = self.proj_out(out)
|
225 |
+
|
226 |
+
# Add residual connection
|
227 |
+
return x + out
|
swim/codeblock.py
CHANGED
@@ -2,7 +2,7 @@ import torch
|
|
2 |
import torch.nn as nn
|
3 |
|
4 |
|
5 |
-
class
|
6 |
def __init__(
|
7 |
self, num_codebook_vectors: int = 1024, latent_dim: int = 256, beta: int = 0.25
|
8 |
):
|
|
|
2 |
import torch.nn as nn
|
3 |
|
4 |
|
5 |
+
class SwimCodeBook(nn.Module):
|
6 |
def __init__(
|
7 |
self, num_codebook_vectors: int = 1024, latent_dim: int = 256, beta: int = 0.25
|
8 |
):
|
swim/encoder.py
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from .blocks import DownsampleBlock, GroupNorm, AttentionBlock, ResnetBlock
|
5 |
-
|
6 |
-
|
7 |
-
class SwimEncoder(nn.Module):
|
8 |
-
"""
|
9 |
-
The encoder part of the VQGAN.
|
10 |
-
|
11 |
-
Args:
|
12 |
-
img_channels (int): Number of channels in the input image.
|
13 |
-
image_size (int): Size of the input image, only used in encoder (height or width ).
|
14 |
-
latent_channels (int): Number of channels in the latent vector.
|
15 |
-
intermediate_channels (list): List of channels in the intermediate layers.
|
16 |
-
num_residual_blocks (int): Number of residual blocks b/w each downsample block.
|
17 |
-
dropout (float): Dropout probability for residual blocks.
|
18 |
-
attention_resolution (list): tensor size ( height or width ) at which to add attention blocks
|
19 |
-
"""
|
20 |
-
|
21 |
-
def __init__(
|
22 |
-
self,
|
23 |
-
img_channels: int = 3,
|
24 |
-
image_size: int = 256,
|
25 |
-
latent_channels: int = 256,
|
26 |
-
intermediate_channels: list = [128, 128, 256, 256, 512],
|
27 |
-
num_residual_blocks: int = 2,
|
28 |
-
dropout: float = 0.0,
|
29 |
-
attention_resolution: list = [16],
|
30 |
-
):
|
31 |
-
super().__init__()
|
32 |
-
|
33 |
-
# Inserting first intermediate channel to index 0
|
34 |
-
intermediate_channels.insert(0, intermediate_channels[0])
|
35 |
-
|
36 |
-
# Appends all the layers to this list
|
37 |
-
layers = []
|
38 |
-
|
39 |
-
# Addingt the first conv layer increase input channels to the first intermediate channels
|
40 |
-
layers.append(
|
41 |
-
nn.Conv2d(
|
42 |
-
img_channels,
|
43 |
-
intermediate_channels[0],
|
44 |
-
kernel_size=3,
|
45 |
-
stride=1,
|
46 |
-
padding=1,
|
47 |
-
)
|
48 |
-
)
|
49 |
-
|
50 |
-
# Loop over the intermediate channels except the last one
|
51 |
-
for n in range(len(intermediate_channels) - 1):
|
52 |
-
in_channels = intermediate_channels[n]
|
53 |
-
out_channels = intermediate_channels[n + 1]
|
54 |
-
|
55 |
-
# Adding the residual blocks for each channel
|
56 |
-
for _ in range(num_residual_blocks):
|
57 |
-
layers.append(ResnetBlock(in_channels, out_channels, dropout=dropout))
|
58 |
-
in_channels = out_channels
|
59 |
-
|
60 |
-
# Once we have downsampled the image to the size in attention resolution, we add attention blocks
|
61 |
-
if image_size in attention_resolution:
|
62 |
-
layers.append(AttentionBlock(in_channels))
|
63 |
-
|
64 |
-
# only downsample for the first n-2 layers, and decrease the input size by a factor of 2
|
65 |
-
if n != len(intermediate_channels) - 2:
|
66 |
-
layers.append(DownsampleBlock(intermediate_channels[n + 1]))
|
67 |
-
image_size = image_size // 2 # Downsample by a factor of 2
|
68 |
-
|
69 |
-
in_channels = intermediate_channels[-1]
|
70 |
-
layers.extend(
|
71 |
-
[
|
72 |
-
ResnetBlock(
|
73 |
-
in_channels=in_channels, out_channels=in_channels, dropout=dropout
|
74 |
-
),
|
75 |
-
AttentionBlock(in_channels=in_channels),
|
76 |
-
ResnetBlock(
|
77 |
-
in_channels=in_channels, out_channels=in_channels, dropout=dropout
|
78 |
-
),
|
79 |
-
GroupNorm(in_channels=in_channels),
|
80 |
-
nn.SiLU(),
|
81 |
-
# increase the channels upto the latent vector channels
|
82 |
-
nn.Conv2d(
|
83 |
-
in_channels, latent_channels, kernel_size=3, stride=1, padding=1
|
84 |
-
),
|
85 |
-
]
|
86 |
-
)
|
87 |
-
self.model = nn.Sequential(*layers)
|
88 |
-
|
89 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
90 |
-
return self.model(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train.py
CHANGED
@@ -1,8 +1,72 @@
|
|
1 |
import torch
|
2 |
from torchinfo import summary
|
3 |
-
from swim.encoder import SwimEncoder
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
sample = torch.randn(1, 3, 512, 512).to("meta")
|
7 |
|
8 |
-
summary(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from torchinfo import summary
|
|
|
3 |
|
4 |
+
from swim.autoencoder import Autoencoder
|
5 |
+
from diffusers import AutoencoderKL, UNet2DModel
|
6 |
+
|
7 |
+
# vae = Autoencoder(
|
8 |
+
# z_channels=4,
|
9 |
+
# in_channels=3,
|
10 |
+
# channels=128,
|
11 |
+
# channel_multipliers=[1, 2, 4, 4],
|
12 |
+
# n_resnet_blocks=2,
|
13 |
+
# emb_channels=4,
|
14 |
+
# ).to("meta")
|
15 |
+
# lol_vae = AutoencoderKL.from_pretrained(
|
16 |
+
# "stabilityai/stable-diffusion-2-1", subfolder="vae"
|
17 |
+
# ).to("meta")
|
18 |
+
|
19 |
+
# # copy weights from lol_vae to vae
|
20 |
+
# import json
|
21 |
+
|
22 |
+
# with open("lolvae.json", "w") as f:
|
23 |
+
# json.dump(list(lol_vae.state_dict().keys()), f, indent=4)
|
24 |
+
|
25 |
+
# with open("vae.json", "w") as f:
|
26 |
+
# json.dump(list(vae.state_dict().keys()), f, indent=4)
|
27 |
+
|
28 |
+
# sample = torch.randn(1, 3, 512, 512).to("meta")
|
29 |
+
# # lantent = vae.encoder(sample)
|
30 |
+
|
31 |
+
from diffusers import UNet2DModel
|
32 |
+
|
33 |
+
model = UNet2DModel(
|
34 |
+
sample_size=512, # the target image resolution
|
35 |
+
in_channels=3, # the number of input channels, 3 for RGB images
|
36 |
+
out_channels=3, # the number of output channels
|
37 |
+
layers_per_block=2, # how many ResNet layers to use per UNet block
|
38 |
+
block_out_channels=(
|
39 |
+
128,
|
40 |
+
128,
|
41 |
+
256,
|
42 |
+
256,
|
43 |
+
512,
|
44 |
+
512,
|
45 |
+
), # the number of output channels for each UNet block
|
46 |
+
down_block_types=(
|
47 |
+
"DownBlock2D", # a regular ResNet downsampling block
|
48 |
+
"DownBlock2D",
|
49 |
+
"DownBlock2D",
|
50 |
+
"DownBlock2D",
|
51 |
+
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
|
52 |
+
"DownBlock2D",
|
53 |
+
),
|
54 |
+
up_block_types=(
|
55 |
+
"UpBlock2D", # a regular ResNet upsampling block
|
56 |
+
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
|
57 |
+
"UpBlock2D",
|
58 |
+
"UpBlock2D",
|
59 |
+
"UpBlock2D",
|
60 |
+
"UpBlock2D",
|
61 |
+
),
|
62 |
+
).to("meta")
|
63 |
+
|
64 |
sample = torch.randn(1, 3, 512, 512).to("meta")
|
65 |
|
66 |
+
summary(
|
67 |
+
model,
|
68 |
+
input_data=(
|
69 |
+
sample,
|
70 |
+
0,
|
71 |
+
),
|
72 |
+
)
|