shreyajn commited on
Commit
a372917
1 Parent(s): c27419a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +286 -0
README.md ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: apache-2.0
4
+ pipeline_tag: unconditional-image-generation
5
+ tags:
6
+ - generative_ai
7
+ - quantized
8
+ - android
9
+
10
+ ---
11
+
12
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/controlnet_quantized/web-assets/banner.png)
13
+
14
+ # ControlNet: Optimized for Mobile Deployment
15
+ ## Generating visual arts from text prompt and input guiding image
16
+
17
+ On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.
18
+
19
+ This model is an implementation of ControlNet found [here](https://github.com/lllyasviel/ControlNet).
20
+ This repository provides scripts to run ControlNet on Qualcomm® devices.
21
+ More details on model performance across various devices, can be found
22
+ [here](https://aihub.qualcomm.com/models/controlnet_quantized).
23
+
24
+
25
+ ### Model Details
26
+
27
+ - **Model Type:** Image generation
28
+ - **Model Stats:**
29
+ - Input: Text prompt and input image as a reference
30
+ - QNN-SDK: 2.19
31
+ - Text Encoder Number of parameters: 340M
32
+ - UNet Number of parameters: 865M
33
+ - VAE Decoder Number of parameters: 83M
34
+ - ControlNet Number of parameters: 361M
35
+ - Model size: 1.4GB
36
+
37
+
38
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
+ | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 11.369 ms | 0 - 33 MB | UINT16 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 386.746 ms | 0 - 4 MB | UINT16 | NPU | [VAEDecoder_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/VAEDecoder_Quantized.bin)
42
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 259.981 ms | 12 - 14 MB | UINT16 | NPU | [UNet_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/UNet_Quantized.bin)
43
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 103.748 ms | 0 - 22 MB | UINT16 | NPU | [ControlNet_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin)
44
+
45
+
46
+ ## Installation
47
+
48
+ This model can be installed as a Python package via pip.
49
+
50
+ ```bash
51
+ pip install "qai-hub-models[controlnet_quantized]"
52
+ ```
53
+
54
+
55
+
56
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
57
+
58
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
59
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
60
+
61
+ With this API token, you can configure your client to run models on the cloud
62
+ hosted devices.
63
+ ```bash
64
+ qai-hub configure --api_token API_TOKEN
65
+ ```
66
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
67
+
68
+
69
+
70
+ ## Demo on-device
71
+
72
+ The package contains a simple end-to-end demo that downloads pre-trained
73
+ weights and runs this model on a sample input.
74
+
75
+ ```bash
76
+ python -m qai_hub_models.models.controlnet_quantized.demo
77
+ ```
78
+
79
+ The above demo runs a reference implementation of pre-processing, model
80
+ inference, and post processing.
81
+
82
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
83
+ environment, please add the following to your cell (instead of the above).
84
+ ```
85
+ %run -m qai_hub_models.models.controlnet_quantized.demo
86
+ ```
87
+
88
+
89
+ ### Run model on a cloud-hosted device
90
+
91
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
92
+ device. This script does the following:
93
+ * Performance check on-device on a cloud-hosted device
94
+ * Downloads compiled assets that can be deployed on-device for Android.
95
+ * Accuracy check between PyTorch and on-device outputs.
96
+
97
+ ```bash
98
+ python -m qai_hub_models.models.controlnet_quantized.export
99
+ ```
100
+
101
+ ```
102
+ Profile Job summary of TextEncoder_Quantized
103
+ --------------------------------------------------
104
+ Device: Samsung Galaxy S23 Ultra (13)
105
+ Estimated Inference Time: 11.37 ms
106
+ Estimated Peak Memory Range: 0.05-33.25 MB
107
+ Compute Units: NPU (570) | Total (570)
108
+
109
+ Profile Job summary of VAEDecoder_Quantized
110
+ --------------------------------------------------
111
+ Device: Samsung Galaxy S23 Ultra (13)
112
+ Estimated Inference Time: 386.75 ms
113
+ Estimated Peak Memory Range: 0.12-4.28 MB
114
+ Compute Units: NPU (409) | Total (409)
115
+
116
+ Profile Job summary of UNet_Quantized
117
+ --------------------------------------------------
118
+ Device: Samsung Galaxy S23 Ultra (13)
119
+ Estimated Inference Time: 259.98 ms
120
+ Estimated Peak Memory Range: 12.45-14.35 MB
121
+ Compute Units: NPU (5434) | Total (5434)
122
+
123
+ Profile Job summary of ControlNet_Quantized
124
+ --------------------------------------------------
125
+ Device: Samsung Galaxy S23 Ultra (13)
126
+ Estimated Inference Time: 103.75 ms
127
+ Estimated Peak Memory Range: 0.19-22.20 MB
128
+ Compute Units: NPU (2406) | Total (2406)
129
+
130
+
131
+ ```
132
+ ## How does this work?
133
+
134
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/ControlNet/export.py)
135
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
136
+ on-device. Lets go through each step below in detail:
137
+
138
+ Step 1: **Upload compiled model**
139
+
140
+ Upload compiled models from `qai_hub_models.models.controlnet_quantized` on hub.
141
+ ```python
142
+ import torch
143
+
144
+ import qai_hub as hub
145
+ from qai_hub_models.models.controlnet_quantized import Model
146
+
147
+ # Load the model
148
+ model = Model.from_precompiled()
149
+
150
+ model_textencoder_quantized = hub.upload_model(model.text_encoder.get_target_model_path())
151
+ model_unet_quantized = hub.upload_model(model.unet.get_target_model_path())
152
+ model_vaedecoder_quantized = hub.upload_model(model.vae_decoder.get_target_model_path())
153
+ model_controlnet_quantized = hub.upload_model(model.controlnet.get_target_model_path())
154
+ ```
155
+
156
+
157
+ Step 2: **Performance profiling on cloud-hosted device**
158
+
159
+ After uploading compiled models from step 1. Models can be profiled model on-device using the
160
+ `target_model`. Note that this scripts runs the model on a device automatically
161
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
162
+ provided job URL to view a variety of on-device performance metrics.
163
+ ```python
164
+
165
+ # Device
166
+ device = hub.Device("Samsung Galaxy S23")
167
+ profile_job_textencoder_quantized = hub.submit_profile_job(
168
+ model=model_textencoder_quantized,
169
+ device=device,
170
+ )
171
+ profile_job_unet_quantized = hub.submit_profile_job(
172
+ model=model_unet_quantized,
173
+ device=device,
174
+ )
175
+ profile_job_vaedecoder_quantized = hub.submit_profile_job(
176
+ model=model_vaedecoder_quantized,
177
+ device=device,
178
+ )
179
+ profile_job_controlnet_quantized = hub.submit_profile_job(
180
+ model=model_controlnet_quantized,
181
+ device=device,
182
+ )
183
+
184
+ ```
185
+
186
+ Step 3: **Verify on-device accuracy**
187
+
188
+ To verify the accuracy of the model on-device, you can run on-device inference
189
+ on sample input data on the same cloud hosted device.
190
+ ```python
191
+
192
+ input_data_textencoder_quantized = model.text_encoder.sample_inputs()
193
+ inference_job_textencoder_quantized = hub.submit_inference_job(
194
+ model=model_textencoder_quantized,
195
+ device=device,
196
+ inputs=input_data_textencoder_quantized,
197
+ )
198
+ on_device_output_textencoder_quantized = inference_job_textencoder_quantized.download_output_data()
199
+
200
+ input_data_unet_quantized = model.unet.sample_inputs()
201
+ inference_job_unet_quantized = hub.submit_inference_job(
202
+ model=model_unet_quantized,
203
+ device=device,
204
+ inputs=input_data_unet_quantized,
205
+ )
206
+ on_device_output_unet_quantized = inference_job_unet_quantized.download_output_data()
207
+
208
+ input_data_vaedecoder_quantized = model.vae_decoder.sample_inputs()
209
+ inference_job_vaedecoder_quantized = hub.submit_inference_job(
210
+ model=model_vaedecoder_quantized,
211
+ device=device,
212
+ inputs=input_data_vaedecoder_quantized,
213
+ )
214
+ on_device_output_vaedecoder_quantized = inference_job_vaedecoder_quantized.download_output_data()
215
+
216
+ input_data_controlnet_quantized = model.controlnet.sample_inputs()
217
+ inference_job_controlnet_quantized = hub.submit_inference_job(
218
+ model=model_controlnet_quantized,
219
+ device=device,
220
+ inputs=input_data_controlnet_quantized,
221
+ )
222
+ on_device_output_controlnet_quantized = inference_job_controlnet_quantized.download_output_data()
223
+
224
+ ```
225
+ With the output of the model, you can compute like PSNR, relative errors or
226
+ spot check the output with expected output.
227
+
228
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
229
+ AI Hub. [Sign up for early access](https://aihub.qualcomm.com/sign-up).
230
+
231
+
232
+
233
+ ## Deploying compiled model to Android
234
+
235
+
236
+ The models can be deployed using multiple runtimes:
237
+ - TensorFlow Lite (`.tflite` export): [This
238
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
239
+ guide to deploy the .tflite model in an Android application.
240
+
241
+
242
+ - QNN ( `.so` / `.bin` export ): This [sample
243
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
244
+ provides instructions on how to use the `.so` shared library or `.bin` context binary in an Android application.
245
+
246
+
247
+ ## View on Qualcomm® AI Hub
248
+ Get more details on ControlNet's performance across various devices [here](https://aihub.qualcomm.com/models/controlnet_quantized).
249
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
250
+
251
+ ## License
252
+ - The license for the original implementation of ControlNet can be found
253
+ [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
254
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
255
+
256
+ ## References
257
+ * [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
258
+ * [Source Model Implementation](https://github.com/lllyasviel/ControlNet)
259
+
260
+ ## Community
261
+ * Join [our AI Hub Slack community](https://join.slack.com/t/qualcomm-ai-hub/shared_invite/zt-2dgf95loi-CXHTDRR1rvPgQWPO~ZZZJg) to collaborate, post questions and learn more about on-device AI.
262
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
263
+
264
+
265
+ ## Usage and Limitations
266
+
267
+ Model may not be used for or in connection with any of the following applications:
268
+
269
+ - Accessing essential private and public services and benefits;
270
+ - Administration of justice and democratic processes;
271
+ - Assessing or recognizing the emotional state of a person;
272
+ - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
273
+ - Education and vocational training;
274
+ - Employment and workers management;
275
+ - Exploitation of the vulnerabilities of persons resulting in harmful behavior;
276
+ - General purpose social scoring;
277
+ - Law enforcement;
278
+ - Management and operation of critical infrastructure;
279
+ - Migration, asylum and border control management;
280
+ - Predictive policing;
281
+ - Real-time remote biometric identification in public spaces;
282
+ - Recommender systems of social media platforms;
283
+ - Scraping of facial images (from the internet or otherwise); and/or
284
+ - Subliminal manipulation
285
+
286
+