Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -32,10 +32,13 @@ More details on model performance across various devices, can be found
|
|
32 |
- Model size: 68.8 MB
|
33 |
|
34 |
|
|
|
|
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 25.
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library |
|
|
|
39 |
|
40 |
|
41 |
## Installation
|
@@ -97,15 +100,17 @@ python -m qai_hub_models.models.ffnet_54s.export
|
|
97 |
Profile Job summary of FFNet-54S
|
98 |
--------------------------------------------------
|
99 |
Device: Snapdragon X Elite CRD (11)
|
100 |
-
Estimated Inference Time: 25.
|
101 |
Estimated Peak Memory Range: 24.05-24.05 MB
|
102 |
Compute Units: NPU (175) | Total (175)
|
103 |
|
104 |
|
105 |
```
|
|
|
|
|
106 |
## How does this work?
|
107 |
|
108 |
-
This [export script](https://
|
109 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
110 |
on-device. Lets go through each step below in detail:
|
111 |
|
@@ -183,6 +188,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
183 |
|
184 |
|
185 |
|
|
|
186 |
## Deploying compiled model to Android
|
187 |
|
188 |
|
@@ -204,7 +210,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
204 |
## License
|
205 |
- The license for the original implementation of FFNet-54S can be found
|
206 |
[here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
207 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
208 |
|
209 |
## References
|
210 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|
|
|
32 |
- Model size: 68.8 MB
|
33 |
|
34 |
|
35 |
+
|
36 |
+
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 25.403 ms | 4 - 7 MB | FP16 | NPU | [FFNet-54S.tflite](https://huggingface.co/qualcomm/FFNet-54S/blob/main/FFNet-54S.tflite)
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 20.253 ms | 24 - 47 MB | FP16 | NPU | [FFNet-54S.so](https://huggingface.co/qualcomm/FFNet-54S/blob/main/FFNet-54S.so)
|
41 |
+
|
42 |
|
43 |
|
44 |
## Installation
|
|
|
100 |
Profile Job summary of FFNet-54S
|
101 |
--------------------------------------------------
|
102 |
Device: Snapdragon X Elite CRD (11)
|
103 |
+
Estimated Inference Time: 25.73 ms
|
104 |
Estimated Peak Memory Range: 24.05-24.05 MB
|
105 |
Compute Units: NPU (175) | Total (175)
|
106 |
|
107 |
|
108 |
```
|
109 |
+
|
110 |
+
|
111 |
## How does this work?
|
112 |
|
113 |
+
This [export script](https://aihub.qualcomm.com/models/ffnet_54s/qai_hub_models/models/FFNet-54S/export.py)
|
114 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
115 |
on-device. Lets go through each step below in detail:
|
116 |
|
|
|
188 |
|
189 |
|
190 |
|
191 |
+
|
192 |
## Deploying compiled model to Android
|
193 |
|
194 |
|
|
|
210 |
## License
|
211 |
- The license for the original implementation of FFNet-54S can be found
|
212 |
[here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
213 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
214 |
|
215 |
## References
|
216 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|