shreyajn commited on
Commit
01a0a41
1 Parent(s): cc51e92

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +229 -0
README.md ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: agpl-3.0
4
+ pipeline_tag: image-segmentation
5
+ tags:
6
+ - android
7
+
8
+ ---
9
+
10
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/fastsam_x/web-assets/banner.png)
11
+
12
+ # FastSam-X: Optimized for Mobile Deployment
13
+ ## Generate high quality segmentation mask on device
14
+
15
+ The Fast Segment Anything Model (FastSAM) is a novel, real-time CNN-based solution for the Segment Anything task. This task is designed to segment any object within an image based on various possible user interaction prompts. The model performs competitively despite significantly reduced computation, making it a practical choice for a variety of vision tasks.
16
+
17
+ This model is an implementation of FastSam-X found [here](https://github.com/CASIA-IVA-Lab/FastSAM).
18
+ This repository provides scripts to run FastSam-X on Qualcomm® devices.
19
+ More details on model performance across various devices, can be found
20
+ [here](https://aihub.qualcomm.com/models/fastsam_x).
21
+
22
+
23
+ ### Model Details
24
+
25
+ - **Model Type:** Semantic segmentation
26
+ - **Model Stats:**
27
+ - Model checkpoint: fastsam-x.pt
28
+ - Inference latency: RealTime
29
+ - Input resolution: 640x640
30
+ - Number of parameters: 72.2M
31
+ - Model size: 276 MB
32
+
33
+
34
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
+ | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 64.468 ms | 9 - 14 MB | FP16 | NPU | [FastSam-X.tflite](https://huggingface.co/qualcomm/FastSam-X/blob/main/FastSam-X.tflite)
37
+
38
+
39
+ ## Installation
40
+
41
+ This model can be installed as a Python package via pip.
42
+
43
+ ```bash
44
+ pip install "qai-hub-models[fastsam_x]"
45
+ ```
46
+
47
+
48
+
49
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
50
+
51
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
52
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
53
+
54
+ With this API token, you can configure your client to run models on the cloud
55
+ hosted devices.
56
+ ```bash
57
+ qai-hub configure --api_token API_TOKEN
58
+ ```
59
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
60
+
61
+
62
+
63
+ ## Demo off target
64
+
65
+ The package contains a simple end-to-end demo that downloads pre-trained
66
+ weights and runs this model on a sample input.
67
+
68
+ ```bash
69
+ python -m qai_hub_models.models.fastsam_x.demo
70
+ ```
71
+
72
+ The above demo runs a reference implementation of pre-processing, model
73
+ inference, and post processing.
74
+
75
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
76
+ environment, please add the following to your cell (instead of the above).
77
+ ```
78
+ %run -m qai_hub_models.models.fastsam_x.demo
79
+ ```
80
+
81
+
82
+ ### Run model on a cloud-hosted device
83
+
84
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
85
+ device. This script does the following:
86
+ * Performance check on-device on a cloud-hosted device
87
+ * Downloads compiled assets that can be deployed on-device for Android.
88
+ * Accuracy check between PyTorch and on-device outputs.
89
+
90
+ ```bash
91
+ python -m qai_hub_models.models.fastsam_x.export
92
+ ```
93
+
94
+ ```
95
+ Profile Job summary of FastSam-X
96
+ --------------------------------------------------
97
+ Device: Samsung Galaxy S23 Ultra (13)
98
+ Estimated Inference Time: 64.47 ms
99
+ Estimated Peak Memory Range: 8.80-13.78 MB
100
+ Compute Units: NPU (420) | Total (420)
101
+
102
+
103
+ ```
104
+ ## How does this work?
105
+
106
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/FastSam-X/export.py)
107
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
108
+ on-device. Lets go through each step below in detail:
109
+
110
+ Step 1: **Compile model for on-device deployment**
111
+
112
+ To compile a PyTorch model for on-device deployment, we first trace the model
113
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
114
+
115
+ ```python
116
+ import torch
117
+
118
+ import qai_hub as hub
119
+ from qai_hub_models.models.fastsam_x import Model
120
+
121
+ # Load the model
122
+ torch_model = Model.from_pretrained()
123
+ torch_model.eval()
124
+
125
+ # Device
126
+ device = hub.Device("Samsung Galaxy S23")
127
+
128
+ # Trace model
129
+ input_shape = torch_model.get_input_spec()
130
+ sample_inputs = torch_model.sample_inputs()
131
+
132
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
133
+
134
+ # Compile model on a specific device
135
+ compile_job = hub.submit_compile_job(
136
+ model=pt_model,
137
+ device=device,
138
+ input_specs=torch_model.get_input_spec(),
139
+ )
140
+
141
+ # Get target model to run on-device
142
+ target_model = compile_job.get_target_model()
143
+
144
+ ```
145
+
146
+
147
+ Step 2: **Performance profiling on cloud-hosted device**
148
+
149
+ After compiling models from step 1. Models can be profiled model on-device using the
150
+ `target_model`. Note that this scripts runs the model on a device automatically
151
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
152
+ provided job URL to view a variety of on-device performance metrics.
153
+ ```python
154
+ profile_job = hub.submit_profile_job(
155
+ model=target_model,
156
+ device=device,
157
+ )
158
+
159
+ ```
160
+
161
+ Step 3: **Verify on-device accuracy**
162
+
163
+ To verify the accuracy of the model on-device, you can run on-device inference
164
+ on sample input data on the same cloud hosted device.
165
+ ```python
166
+ input_data = torch_model.sample_inputs()
167
+ inference_job = hub.submit_inference_job(
168
+ model=target_model,
169
+ device=device,
170
+ inputs=input_data,
171
+ )
172
+
173
+ on_device_output = inference_job.download_output_data()
174
+
175
+ ```
176
+ With the output of the model, you can compute like PSNR, relative errors or
177
+ spot check the output with expected output.
178
+
179
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
180
+ AI Hub. [Sign up for early access](https://aihub.qualcomm.com/sign-up).
181
+
182
+
183
+ ## Run demo on a cloud-hosted device
184
+
185
+ You can also run the demo on-device.
186
+
187
+ ```bash
188
+ python -m qai_hub_models.models.fastsam_x.demo --on-device
189
+ ```
190
+
191
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
192
+ environment, please add the following to your cell (instead of the above).
193
+ ```
194
+ %run -m qai_hub_models.models.fastsam_x.demo -- --on-device
195
+ ```
196
+
197
+
198
+ ## Deploying compiled model to Android
199
+
200
+
201
+ The models can be deployed using multiple runtimes:
202
+ - TensorFlow Lite (`.tflite` export): [This
203
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
204
+ guide to deploy the .tflite model in an Android application.
205
+
206
+
207
+ - QNN (`.so` export ): This [sample
208
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
209
+ provides instructions on how to use the `.so` shared library in an Android application.
210
+
211
+
212
+ ## View on Qualcomm® AI Hub
213
+ Get more details on FastSam-X's performance across various devices [here](https://aihub.qualcomm.com/models/fastsam_x).
214
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
215
+
216
+ ## License
217
+ - The license for the original implementation of FastSam-X can be found
218
+ [here](https://github.com/CASIA-IVA-Lab/FastSAM/blob/main/LICENSE).
219
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
220
+
221
+ ## References
222
+ * [Fast Segment Anything](https://arxiv.org/abs/2306.12156)
223
+ * [Source Model Implementation](https://github.com/CASIA-IVA-Lab/FastSAM)
224
+
225
+ ## Community
226
+ * Join [our AI Hub Slack community](https://join.slack.com/t/qualcomm-ai-hub/shared_invite/zt-2dgf95loi-CXHTDRR1rvPgQWPO~ZZZJg) to collaborate, post questions and learn more about on-device AI.
227
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
228
+
229
+