qaihm-bot commited on
Commit
1ba90b1
1 Parent(s): a8ba8ca

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +15 -7
README.md CHANGED
@@ -31,12 +31,13 @@ More details on model performance across various devices, can be found
31
  - Model checkpoint: Imagenet
32
  - Input resolution: 224x224
33
  - Number of parameters: 6.62M
34
- - Model size: 16.0 MB
35
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.026 ms | 0 - 2 MB | FP16 | NPU | [GoogLeNetQuantized.tflite](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.tflite)
 
40
 
41
 
42
  ## Installation
@@ -96,10 +97,17 @@ python -m qai_hub_models.models.googlenet_quantized.export
96
  ```
97
  Profile Job summary of GoogLeNetQuantized
98
  --------------------------------------------------
99
- Device: Samsung Galaxy S23 Ultra (13)
100
- Estimated Inference Time: 1.03 ms
101
- Estimated Peak Memory Range: 0.02-1.69 MB
102
- Compute Units: NPU (183) | Total (183)
 
 
 
 
 
 
 
103
 
104
 
105
  ```
@@ -218,7 +226,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
218
  ## License
219
  - The license for the original implementation of GoogLeNetQuantized can be found
220
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
221
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
222
 
223
  ## References
224
  * [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)
 
31
  - Model checkpoint: Imagenet
32
  - Input resolution: 224x224
33
  - Number of parameters: 6.62M
34
+ - Model size: 6.55 MB
35
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.331 ms | 0 - 2 MB | INT8 | NPU | [GoogLeNetQuantized.tflite](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.365 ms | 1 - 5 MB | INT8 | NPU | [GoogLeNetQuantized.so](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.so)
41
 
42
 
43
  ## Installation
 
97
  ```
98
  Profile Job summary of GoogLeNetQuantized
99
  --------------------------------------------------
100
+ Device: Samsung Galaxy S24 (14)
101
+ Estimated Inference Time: 0.25 ms
102
+ Estimated Peak Memory Range: 0.02-30.86 MB
103
+ Compute Units: NPU (87) | Total (87)
104
+
105
+ Profile Job summary of GoogLeNetQuantized
106
+ --------------------------------------------------
107
+ Device: Samsung Galaxy S24 (14)
108
+ Estimated Inference Time: 0.26 ms
109
+ Estimated Peak Memory Range: 0.59-45.16 MB
110
+ Compute Units: NPU (89) | Total (89)
111
 
112
 
113
  ```
 
226
  ## License
227
  - The license for the original implementation of GoogLeNetQuantized can be found
228
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
229
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
230
 
231
  ## References
232
  * [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)