Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -31,12 +31,13 @@ More details on model performance across various devices, can be found
|
|
31 |
- Model checkpoint: Imagenet
|
32 |
- Input resolution: 224x224
|
33 |
- Number of parameters: 6.62M
|
34 |
-
- Model size:
|
35 |
|
36 |
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
|
|
40 |
|
41 |
|
42 |
## Installation
|
@@ -96,10 +97,17 @@ python -m qai_hub_models.models.googlenet_quantized.export
|
|
96 |
```
|
97 |
Profile Job summary of GoogLeNetQuantized
|
98 |
--------------------------------------------------
|
99 |
-
Device: Samsung Galaxy
|
100 |
-
Estimated Inference Time:
|
101 |
-
Estimated Peak Memory Range: 0.02-
|
102 |
-
Compute Units: NPU (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
```
|
@@ -218,7 +226,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
218 |
## License
|
219 |
- The license for the original implementation of GoogLeNetQuantized can be found
|
220 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
221 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
222 |
|
223 |
## References
|
224 |
* [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)
|
|
|
31 |
- Model checkpoint: Imagenet
|
32 |
- Input resolution: 224x224
|
33 |
- Number of parameters: 6.62M
|
34 |
+
- Model size: 6.55 MB
|
35 |
|
36 |
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.331 ms | 0 - 2 MB | INT8 | NPU | [GoogLeNetQuantized.tflite](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.tflite)
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.365 ms | 1 - 5 MB | INT8 | NPU | [GoogLeNetQuantized.so](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.so)
|
41 |
|
42 |
|
43 |
## Installation
|
|
|
97 |
```
|
98 |
Profile Job summary of GoogLeNetQuantized
|
99 |
--------------------------------------------------
|
100 |
+
Device: Samsung Galaxy S24 (14)
|
101 |
+
Estimated Inference Time: 0.25 ms
|
102 |
+
Estimated Peak Memory Range: 0.02-30.86 MB
|
103 |
+
Compute Units: NPU (87) | Total (87)
|
104 |
+
|
105 |
+
Profile Job summary of GoogLeNetQuantized
|
106 |
+
--------------------------------------------------
|
107 |
+
Device: Samsung Galaxy S24 (14)
|
108 |
+
Estimated Inference Time: 0.26 ms
|
109 |
+
Estimated Peak Memory Range: 0.59-45.16 MB
|
110 |
+
Compute Units: NPU (89) | Total (89)
|
111 |
|
112 |
|
113 |
```
|
|
|
226 |
## License
|
227 |
- The license for the original implementation of GoogLeNetQuantized can be found
|
228 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
229 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
230 |
|
231 |
## References
|
232 |
* [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)
|