qaihm-bot commited on
Commit
2fb56fd
1 Parent(s): 99e1a8d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -36,8 +36,8 @@ More details on model performance across various devices, can be found
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.297 ms | 0 - 2 MB | INT8 | NPU | [GoogLeNetQuantized.tflite](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.tflite)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.345 ms | 0 - 4 MB | INT8 | NPU | [GoogLeNetQuantized.so](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.so)
41
 
42
 
43
  ## Installation
@@ -45,10 +45,11 @@ More details on model performance across various devices, can be found
45
  This model can be installed as a Python package via pip.
46
 
47
  ```bash
48
- pip install qai-hub-models
49
  ```
50
 
51
 
 
52
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
53
 
54
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
@@ -98,8 +99,8 @@ python -m qai_hub_models.models.googlenet_quantized.export
98
  Profile Job summary of GoogLeNetQuantized
99
  --------------------------------------------------
100
  Device: Snapdragon X Elite CRD (11)
101
- Estimated Inference Time: 0.47 ms
102
- Estimated Peak Memory Range: 0.52-0.52 MB
103
  Compute Units: NPU (86) | Total (86)
104
 
105
 
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.296 ms | 0 - 1 MB | INT8 | NPU | [GoogLeNetQuantized.tflite](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.337 ms | 0 - 4 MB | INT8 | NPU | [GoogLeNetQuantized.so](https://huggingface.co/qualcomm/GoogLeNetQuantized/blob/main/GoogLeNetQuantized.so)
41
 
42
 
43
  ## Installation
 
45
  This model can be installed as a Python package via pip.
46
 
47
  ```bash
48
+ pip install "qai-hub-models[googlenet_quantized]"
49
  ```
50
 
51
 
52
+
53
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
54
 
55
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
 
99
  Profile Job summary of GoogLeNetQuantized
100
  --------------------------------------------------
101
  Device: Snapdragon X Elite CRD (11)
102
+ Estimated Inference Time: 0.46 ms
103
+ Estimated Peak Memory Range: 0.49-0.49 MB
104
  Compute Units: NPU (86) | Total (86)
105
 
106