qaihm-bot commited on
Commit
f736e38
1 Parent(s): ab4fa52

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -33,7 +33,7 @@ More details on model performance across various devices, can be found
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.508 ms | 0 - 3 MB | FP16 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite)
37
 
38
 
39
  ## Installation
@@ -94,9 +94,9 @@ python -m qai_hub_models.models.hrnet_pose_quantized.export
94
  ```
95
  Profile Job summary of HRNetPoseQuantized
96
  --------------------------------------------------
97
- Device: Samsung Galaxy S23 Ultra (13)
98
- Estimated Inference Time: 2.51 ms
99
- Estimated Peak Memory Range: 0.02-3.47 MB
100
  Compute Units: NPU (515) | Total (515)
101
 
102
 
@@ -216,7 +216,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
216
  ## License
217
  - The license for the original implementation of HRNetPoseQuantized can be found
218
  [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
219
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
220
 
221
  ## References
222
  * [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)
 
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.539 ms | 0 - 4 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite)
37
 
38
 
39
  ## Installation
 
94
  ```
95
  Profile Job summary of HRNetPoseQuantized
96
  --------------------------------------------------
97
+ Device: Samsung Galaxy S24 (14)
98
+ Estimated Inference Time: 1.86 ms
99
+ Estimated Peak Memory Range: 0.02-97.61 MB
100
  Compute Units: NPU (515) | Total (515)
101
 
102
 
 
216
  ## License
217
  - The license for the original implementation of HRNetPoseQuantized can be found
218
  [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
219
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
220
 
221
  ## References
222
  * [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)