Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ More details on model performance across various devices, can be found
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -94,9 +94,9 @@ python -m qai_hub_models.models.hrnet_pose_quantized.export
|
|
94 |
```
|
95 |
Profile Job summary of HRNetPoseQuantized
|
96 |
--------------------------------------------------
|
97 |
-
Device: Samsung Galaxy
|
98 |
-
Estimated Inference Time:
|
99 |
-
Estimated Peak Memory Range: 0.02-
|
100 |
Compute Units: NPU (515) | Total (515)
|
101 |
|
102 |
|
@@ -216,7 +216,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
216 |
## License
|
217 |
- The license for the original implementation of HRNetPoseQuantized can be found
|
218 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
219 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
220 |
|
221 |
## References
|
222 |
* [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)
|
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.539 ms | 0 - 4 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite)
|
37 |
|
38 |
|
39 |
## Installation
|
|
|
94 |
```
|
95 |
Profile Job summary of HRNetPoseQuantized
|
96 |
--------------------------------------------------
|
97 |
+
Device: Samsung Galaxy S24 (14)
|
98 |
+
Estimated Inference Time: 1.86 ms
|
99 |
+
Estimated Peak Memory Range: 0.02-97.61 MB
|
100 |
Compute Units: NPU (515) | Total (515)
|
101 |
|
102 |
|
|
|
216 |
## License
|
217 |
- The license for the original implementation of HRNetPoseQuantized can be found
|
218 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
219 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
220 |
|
221 |
## References
|
222 |
* [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)
|