Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -136,14 +136,11 @@ from qai_hub_models.models.mediapipe_face import MediaPipeFaceDetector,MediaPipe
|
|
136 |
|
137 |
# Load the model
|
138 |
face_detector_model = MediaPipeFaceDetector.from_pretrained()
|
139 |
-
|
140 |
face_landmark_detector_model = MediaPipeFaceLandmarkDetector.from_pretrained()
|
141 |
|
142 |
-
|
143 |
# Device
|
144 |
device = hub.Device("Samsung Galaxy S23")
|
145 |
|
146 |
-
|
147 |
# Trace model
|
148 |
face_detector_input_shape = face_detector_model.get_input_spec()
|
149 |
face_detector_sample_inputs = face_detector_model.sample_inputs()
|
@@ -159,7 +156,6 @@ face_detector_compile_job = hub.submit_compile_job(
|
|
159 |
|
160 |
# Get target model to run on-device
|
161 |
face_detector_target_model = face_detector_compile_job.get_target_model()
|
162 |
-
|
163 |
# Trace model
|
164 |
face_landmark_detector_input_shape = face_landmark_detector_model.get_input_spec()
|
165 |
face_landmark_detector_sample_inputs = face_landmark_detector_model.sample_inputs()
|
@@ -186,12 +182,10 @@ After compiling models from step 1. Models can be profiled model on-device using
|
|
186 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
187 |
provided job URL to view a variety of on-device performance metrics.
|
188 |
```python
|
189 |
-
|
190 |
face_detector_profile_job = hub.submit_profile_job(
|
191 |
model=face_detector_target_model,
|
192 |
device=device,
|
193 |
)
|
194 |
-
|
195 |
face_landmark_detector_profile_job = hub.submit_profile_job(
|
196 |
model=face_landmark_detector_target_model,
|
197 |
device=device,
|
|
|
136 |
|
137 |
# Load the model
|
138 |
face_detector_model = MediaPipeFaceDetector.from_pretrained()
|
|
|
139 |
face_landmark_detector_model = MediaPipeFaceLandmarkDetector.from_pretrained()
|
140 |
|
|
|
141 |
# Device
|
142 |
device = hub.Device("Samsung Galaxy S23")
|
143 |
|
|
|
144 |
# Trace model
|
145 |
face_detector_input_shape = face_detector_model.get_input_spec()
|
146 |
face_detector_sample_inputs = face_detector_model.sample_inputs()
|
|
|
156 |
|
157 |
# Get target model to run on-device
|
158 |
face_detector_target_model = face_detector_compile_job.get_target_model()
|
|
|
159 |
# Trace model
|
160 |
face_landmark_detector_input_shape = face_landmark_detector_model.get_input_spec()
|
161 |
face_landmark_detector_sample_inputs = face_landmark_detector_model.sample_inputs()
|
|
|
182 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
183 |
provided job URL to view a variety of on-device performance metrics.
|
184 |
```python
|
|
|
185 |
face_detector_profile_job = hub.submit_profile_job(
|
186 |
model=face_detector_target_model,
|
187 |
device=device,
|
188 |
)
|
|
|
189 |
face_landmark_detector_profile_job = hub.submit_profile_job(
|
190 |
model=face_landmark_detector_target_model,
|
191 |
device=device,
|