qaihm-bot commited on
Commit
9125de0
·
verified ·
1 Parent(s): e191549

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +13 -7
README.md CHANGED
@@ -32,12 +32,15 @@ More details on model performance across various devices, can be found
32
  - Model size (MediaPipeFaceLandmarkDetector): 2.34 MB
33
 
34
 
 
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.779 ms | 0 - 4 MB | FP16 | NPU | [MediaPipeFaceDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection/blob/main/MediaPipeFaceDetector.tflite)
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.32 ms | 0 - 2 MB | FP16 | NPU | [MediaPipeFaceLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection/blob/main/MediaPipeFaceLandmarkDetector.tflite)
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.839 ms | 0 - 6 MB | FP16 | NPU | [MediaPipeFaceDetector.so](https://huggingface.co/qualcomm/MediaPipe-Face-Detection/blob/main/MediaPipeFaceDetector.so)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.384 ms | 0 - 4 MB | FP16 | NPU | [MediaPipeFaceLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Face-Detection/blob/main/MediaPipeFaceLandmarkDetector.so)
 
41
 
42
 
43
  ## Installation
@@ -105,15 +108,17 @@ Compute Units: NPU (147) | Total (147)
105
  Profile Job summary of MediaPipeFaceLandmarkDetector
106
  --------------------------------------------------
107
  Device: Snapdragon X Elite CRD (11)
108
- Estimated Inference Time: 0.52 ms
109
  Estimated Peak Memory Range: 0.42-0.42 MB
110
  Compute Units: NPU (106) | Total (106)
111
 
112
 
113
  ```
 
 
114
  ## How does this work?
115
 
116
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/MediaPipe-Face-Detection/export.py)
117
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
118
  on-device. Lets go through each step below in detail:
119
 
@@ -191,6 +196,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
191
 
192
 
193
 
 
194
  ## Deploying compiled model to Android
195
 
196
 
@@ -212,7 +218,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
212
  ## License
213
  - The license for the original implementation of MediaPipe-Face-Detection can be found
214
  [here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE).
215
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
216
 
217
  ## References
218
  * [BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs](https://arxiv.org/abs/1907.05047)
 
32
  - Model size (MediaPipeFaceLandmarkDetector): 2.34 MB
33
 
34
 
35
+
36
+
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.781 ms | 0 - 2 MB | FP16 | NPU | [MediaPipeFaceDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection/blob/main/MediaPipeFaceDetector.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.318 ms | 0 - 2 MB | FP16 | NPU | [MediaPipeFaceLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection/blob/main/MediaPipeFaceLandmarkDetector.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.835 ms | 0 - 97 MB | FP16 | NPU | [MediaPipeFaceDetector.so](https://huggingface.co/qualcomm/MediaPipe-Face-Detection/blob/main/MediaPipeFaceDetector.so)
42
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.391 ms | 0 - 94 MB | FP16 | NPU | [MediaPipeFaceLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Face-Detection/blob/main/MediaPipeFaceLandmarkDetector.so)
43
+
44
 
45
 
46
  ## Installation
 
108
  Profile Job summary of MediaPipeFaceLandmarkDetector
109
  --------------------------------------------------
110
  Device: Snapdragon X Elite CRD (11)
111
+ Estimated Inference Time: 0.50 ms
112
  Estimated Peak Memory Range: 0.42-0.42 MB
113
  Compute Units: NPU (106) | Total (106)
114
 
115
 
116
  ```
117
+
118
+
119
  ## How does this work?
120
 
121
+ This [export script](https://aihub.qualcomm.com/models/mediapipe_face/qai_hub_models/models/MediaPipe-Face-Detection/export.py)
122
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
123
  on-device. Lets go through each step below in detail:
124
 
 
196
 
197
 
198
 
199
+
200
  ## Deploying compiled model to Android
201
 
202
 
 
218
  ## License
219
  - The license for the original implementation of MediaPipe-Face-Detection can be found
220
  [here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE).
221
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
222
 
223
  ## References
224
  * [BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs](https://arxiv.org/abs/1907.05047)