Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -32,14 +32,17 @@ More details on model performance across various devices, can be found
|
|
32 |
- Model size (MediaPipeHandLandmarkDetector): 7.71 MB
|
33 |
|
34 |
|
|
|
|
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.205 ms | 0 -
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.
|
40 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.299 ms | 1 - 9 MB | FP16 | NPU | [MediaPipeHandLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.so)
|
41 |
|
42 |
|
|
|
43 |
## Installation
|
44 |
|
45 |
This model can be installed as a Python package via pip.
|
@@ -98,22 +101,24 @@ python -m qai_hub_models.models.mediapipe_hand.export
|
|
98 |
Profile Job summary of MediaPipeHandDetector
|
99 |
--------------------------------------------------
|
100 |
Device: Snapdragon X Elite CRD (11)
|
101 |
-
Estimated Inference Time: 1.
|
102 |
Estimated Peak Memory Range: 0.75-0.75 MB
|
103 |
Compute Units: NPU (196) | Total (196)
|
104 |
|
105 |
Profile Job summary of MediaPipeHandLandmarkDetector
|
106 |
--------------------------------------------------
|
107 |
Device: Snapdragon X Elite CRD (11)
|
108 |
-
Estimated Inference Time: 1.
|
109 |
-
Estimated Peak Memory Range:
|
110 |
Compute Units: NPU (209) | Total (209)
|
111 |
|
112 |
|
113 |
```
|
|
|
|
|
114 |
## How does this work?
|
115 |
|
116 |
-
This [export script](https://
|
117 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
118 |
on-device. Lets go through each step below in detail:
|
119 |
|
@@ -191,6 +196,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
191 |
|
192 |
|
193 |
|
|
|
194 |
## Deploying compiled model to Android
|
195 |
|
196 |
|
@@ -212,7 +218,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
212 |
## License
|
213 |
- The license for the original implementation of MediaPipe-Hand-Detection can be found
|
214 |
[here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE).
|
215 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
216 |
|
217 |
## References
|
218 |
* [MediaPipe Hands: On-device Real-time Hand Tracking](https://arxiv.org/abs/2006.10214)
|
|
|
32 |
- Model size (MediaPipeHandLandmarkDetector): 7.71 MB
|
33 |
|
34 |
|
35 |
+
|
36 |
+
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.26 ms | 0 - 11 MB | FP16 | NPU | [MediaPipeHandDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite)
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.205 ms | 0 - 2 MB | FP16 | NPU | [MediaPipeHandLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite)
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.017 ms | 0 - 21 MB | FP16 | NPU | [MediaPipeHandDetector.so](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.so)
|
42 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.299 ms | 1 - 9 MB | FP16 | NPU | [MediaPipeHandLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.so)
|
43 |
|
44 |
|
45 |
+
|
46 |
## Installation
|
47 |
|
48 |
This model can be installed as a Python package via pip.
|
|
|
101 |
Profile Job summary of MediaPipeHandDetector
|
102 |
--------------------------------------------------
|
103 |
Device: Snapdragon X Elite CRD (11)
|
104 |
+
Estimated Inference Time: 1.04 ms
|
105 |
Estimated Peak Memory Range: 0.75-0.75 MB
|
106 |
Compute Units: NPU (196) | Total (196)
|
107 |
|
108 |
Profile Job summary of MediaPipeHandLandmarkDetector
|
109 |
--------------------------------------------------
|
110 |
Device: Snapdragon X Elite CRD (11)
|
111 |
+
Estimated Inference Time: 1.51 ms
|
112 |
+
Estimated Peak Memory Range: 1.10-1.10 MB
|
113 |
Compute Units: NPU (209) | Total (209)
|
114 |
|
115 |
|
116 |
```
|
117 |
+
|
118 |
+
|
119 |
## How does this work?
|
120 |
|
121 |
+
This [export script](https://aihub.qualcomm.com/models/mediapipe_hand/qai_hub_models/models/MediaPipe-Hand-Detection/export.py)
|
122 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
123 |
on-device. Lets go through each step below in detail:
|
124 |
|
|
|
196 |
|
197 |
|
198 |
|
199 |
+
|
200 |
## Deploying compiled model to Android
|
201 |
|
202 |
|
|
|
218 |
## License
|
219 |
- The license for the original implementation of MediaPipe-Hand-Detection can be found
|
220 |
[here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE).
|
221 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
222 |
|
223 |
## References
|
224 |
* [MediaPipe Hands: On-device Real-time Hand Tracking](https://arxiv.org/abs/2006.10214)
|