qaihm-bot commited on
Commit
2c851bb
1 Parent(s): 956389f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +40 -19
README.md CHANGED
@@ -16,7 +16,7 @@ tags:
16
 
17
  Posenet performs pose estimation on human images.
18
 
19
- This model is an implementation of Posenet-Mobilenet found [here](https://github.com/rwightman/posenet-pytorch).
20
  This repository provides scripts to run Posenet-Mobilenet on Qualcomm® devices.
21
  More details on model performance across various devices, can be found
22
  [here](https://aihub.qualcomm.com/models/posenet_mobilenet).
@@ -31,15 +31,32 @@ More details on model performance across various devices, can be found
31
  - Number of parameters: 3.31M
32
  - Model size: 12.7 MB
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
 
36
 
37
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
- | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.367 ms | 0 - 7 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.444 ms | 0 - 13 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so)
41
-
42
-
43
 
44
  ## Installation
45
 
@@ -94,16 +111,16 @@ device. This script does the following:
94
  ```bash
95
  python -m qai_hub_models.models.posenet_mobilenet.export
96
  ```
97
-
98
  ```
99
- Profile Job summary of Posenet-Mobilenet
100
- --------------------------------------------------
101
- Device: Snapdragon X Elite CRD (11)
102
- Estimated Inference Time: 1.57 ms
103
- Estimated Peak Memory Range: 1.52-1.52 MB
104
- Compute Units: NPU (69) | Total (69)
105
-
106
-
 
107
  ```
108
 
109
 
@@ -202,15 +219,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
202
  Get more details on Posenet-Mobilenet's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet).
203
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
204
 
 
205
  ## License
206
- - The license for the original implementation of Posenet-Mobilenet can be found
207
- [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
208
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
209
 
210
  ## References
211
  * [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
212
  * [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)
213
 
 
 
214
  ## Community
215
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
216
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
 
16
 
17
  Posenet performs pose estimation on human images.
18
 
19
+ This model is an implementation of Posenet-Mobilenet found [here]({source_repo}).
20
  This repository provides scripts to run Posenet-Mobilenet on Qualcomm® devices.
21
  More details on model performance across various devices, can be found
22
  [here](https://aihub.qualcomm.com/models/posenet_mobilenet).
 
31
  - Number of parameters: 3.31M
32
  - Model size: 12.7 MB
33
 
34
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
+ |---|---|---|---|---|---|---|---|---|
36
+ | Posenet-Mobilenet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.375 ms | 0 - 32 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
37
+ | Posenet-Mobilenet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.442 ms | 0 - 12 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so) |
38
+ | Posenet-Mobilenet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.894 ms | 0 - 7 MB | FP16 | NPU | [Posenet-Mobilenet.onnx](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.onnx) |
39
+ | Posenet-Mobilenet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.102 ms | 0 - 40 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
40
+ | Posenet-Mobilenet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.157 ms | 2 - 18 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so) |
41
+ | Posenet-Mobilenet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.493 ms | 0 - 45 MB | FP16 | NPU | [Posenet-Mobilenet.onnx](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.onnx) |
42
+ | Posenet-Mobilenet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.396 ms | 0 - 1 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
43
+ | Posenet-Mobilenet | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.387 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
44
+ | Posenet-Mobilenet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.369 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
45
+ | Posenet-Mobilenet | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.396 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
46
+ | Posenet-Mobilenet | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.364 ms | 0 - 9 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
47
+ | Posenet-Mobilenet | SA8775 (Proxy) | SA8775P Proxy | QNN | 1.39 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
48
+ | Posenet-Mobilenet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.372 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
49
+ | Posenet-Mobilenet | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.399 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
50
+ | Posenet-Mobilenet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 2.195 ms | 0 - 41 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
51
+ | Posenet-Mobilenet | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.293 ms | 2 - 21 MB | FP16 | NPU | Use Export Script |
52
+ | Posenet-Mobilenet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.963 ms | 0 - 22 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
53
+ | Posenet-Mobilenet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.077 ms | 2 - 15 MB | FP16 | NPU | Use Export Script |
54
+ | Posenet-Mobilenet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.076 ms | 0 - 24 MB | FP16 | NPU | [Posenet-Mobilenet.onnx](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.onnx) |
55
+ | Posenet-Mobilenet | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.556 ms | 2 - 2 MB | FP16 | NPU | Use Export Script |
56
+ | Posenet-Mobilenet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.147 ms | 7 - 7 MB | FP16 | NPU | [Posenet-Mobilenet.onnx](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.onnx) |
57
 
58
 
59
 
 
 
 
 
 
 
60
 
61
  ## Installation
62
 
 
111
  ```bash
112
  python -m qai_hub_models.models.posenet_mobilenet.export
113
  ```
 
114
  ```
115
+ Profiling Results
116
+ ------------------------------------------------------------
117
+ Posenet-Mobilenet
118
+ Device : Samsung Galaxy S23 (13)
119
+ Runtime : TFLITE
120
+ Estimated inference time (ms) : 1.4
121
+ Estimated peak memory usage (MB): [0, 32]
122
+ Total # Ops : 41
123
+ Compute Unit(s) : NPU (41 ops)
124
  ```
125
 
126
 
 
219
  Get more details on Posenet-Mobilenet's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet).
220
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
221
 
222
+
223
  ## License
224
+ * The license for the original implementation of Posenet-Mobilenet can be found [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
225
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
226
+
227
+
228
 
229
  ## References
230
  * [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
231
  * [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)
232
 
233
+
234
+
235
  ## Community
236
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
237
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).