Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -16,7 +16,7 @@ tags:
|
|
16 |
|
17 |
Posenet performs pose estimation on human images.
|
18 |
|
19 |
-
This model is an implementation of Posenet-Mobilenet found [here](
|
20 |
This repository provides scripts to run Posenet-Mobilenet on Qualcomm® devices.
|
21 |
More details on model performance across various devices, can be found
|
22 |
[here](https://aihub.qualcomm.com/models/posenet_mobilenet).
|
@@ -31,15 +31,32 @@ More details on model performance across various devices, can be found
|
|
31 |
- Number of parameters: 3.31M
|
32 |
- Model size: 12.7 MB
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
|
37 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
-
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.367 ms | 0 - 7 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite)
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.444 ms | 0 - 13 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so)
|
41 |
-
|
42 |
-
|
43 |
|
44 |
## Installation
|
45 |
|
@@ -94,16 +111,16 @@ device. This script does the following:
|
|
94 |
```bash
|
95 |
python -m qai_hub_models.models.posenet_mobilenet.export
|
96 |
```
|
97 |
-
|
98 |
```
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
```
|
108 |
|
109 |
|
@@ -202,15 +219,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
202 |
Get more details on Posenet-Mobilenet's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet).
|
203 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
204 |
|
|
|
205 |
## License
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
209 |
|
210 |
## References
|
211 |
* [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
|
212 |
* [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)
|
213 |
|
|
|
|
|
214 |
## Community
|
215 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
216 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
|
|
16 |
|
17 |
Posenet performs pose estimation on human images.
|
18 |
|
19 |
+
This model is an implementation of Posenet-Mobilenet found [here]({source_repo}).
|
20 |
This repository provides scripts to run Posenet-Mobilenet on Qualcomm® devices.
|
21 |
More details on model performance across various devices, can be found
|
22 |
[here](https://aihub.qualcomm.com/models/posenet_mobilenet).
|
|
|
31 |
- Number of parameters: 3.31M
|
32 |
- Model size: 12.7 MB
|
33 |
|
34 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
+
|---|---|---|---|---|---|---|---|---|
|
36 |
+
| Posenet-Mobilenet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.375 ms | 0 - 32 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
|
37 |
+
| Posenet-Mobilenet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.442 ms | 0 - 12 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so) |
|
38 |
+
| Posenet-Mobilenet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.894 ms | 0 - 7 MB | FP16 | NPU | [Posenet-Mobilenet.onnx](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.onnx) |
|
39 |
+
| Posenet-Mobilenet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.102 ms | 0 - 40 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
|
40 |
+
| Posenet-Mobilenet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.157 ms | 2 - 18 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so) |
|
41 |
+
| Posenet-Mobilenet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.493 ms | 0 - 45 MB | FP16 | NPU | [Posenet-Mobilenet.onnx](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.onnx) |
|
42 |
+
| Posenet-Mobilenet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.396 ms | 0 - 1 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
|
43 |
+
| Posenet-Mobilenet | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.387 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
|
44 |
+
| Posenet-Mobilenet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.369 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
|
45 |
+
| Posenet-Mobilenet | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.396 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| Posenet-Mobilenet | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.364 ms | 0 - 9 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
|
47 |
+
| Posenet-Mobilenet | SA8775 (Proxy) | SA8775P Proxy | QNN | 1.39 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| Posenet-Mobilenet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.372 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
|
49 |
+
| Posenet-Mobilenet | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.399 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| Posenet-Mobilenet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 2.195 ms | 0 - 41 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
|
51 |
+
| Posenet-Mobilenet | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.293 ms | 2 - 21 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| Posenet-Mobilenet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.963 ms | 0 - 22 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite) |
|
53 |
+
| Posenet-Mobilenet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.077 ms | 2 - 15 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| Posenet-Mobilenet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.076 ms | 0 - 24 MB | FP16 | NPU | [Posenet-Mobilenet.onnx](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.onnx) |
|
55 |
+
| Posenet-Mobilenet | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.556 ms | 2 - 2 MB | FP16 | NPU | Use Export Script |
|
56 |
+
| Posenet-Mobilenet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.147 ms | 7 - 7 MB | FP16 | NPU | [Posenet-Mobilenet.onnx](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.onnx) |
|
57 |
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
## Installation
|
62 |
|
|
|
111 |
```bash
|
112 |
python -m qai_hub_models.models.posenet_mobilenet.export
|
113 |
```
|
|
|
114 |
```
|
115 |
+
Profiling Results
|
116 |
+
------------------------------------------------------------
|
117 |
+
Posenet-Mobilenet
|
118 |
+
Device : Samsung Galaxy S23 (13)
|
119 |
+
Runtime : TFLITE
|
120 |
+
Estimated inference time (ms) : 1.4
|
121 |
+
Estimated peak memory usage (MB): [0, 32]
|
122 |
+
Total # Ops : 41
|
123 |
+
Compute Unit(s) : NPU (41 ops)
|
124 |
```
|
125 |
|
126 |
|
|
|
219 |
Get more details on Posenet-Mobilenet's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet).
|
220 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
221 |
|
222 |
+
|
223 |
## License
|
224 |
+
* The license for the original implementation of Posenet-Mobilenet can be found [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
|
225 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
226 |
+
|
227 |
+
|
228 |
|
229 |
## References
|
230 |
* [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
|
231 |
* [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)
|
232 |
|
233 |
+
|
234 |
+
|
235 |
## Community
|
236 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
237 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|