shreyajn commited on
Commit
40fd9c5
1 Parent(s): 4acf89e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +15 -32
README.md CHANGED
@@ -36,8 +36,8 @@ More details on model performance across various devices, can be found
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.388 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.447 ms | 0 - 23 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so)
41
 
42
 
43
 
@@ -98,9 +98,9 @@ python -m qai_hub_models.models.posenet_mobilenet.export
98
  ```
99
  Profile Job summary of Posenet-Mobilenet
100
  --------------------------------------------------
101
- Device: SA8255 (Proxy) (13)
102
- Estimated Inference Time: 1.44 ms
103
- Estimated Peak Memory Range: 0.02-24.99 MB
104
  Compute Units: NPU (69) | Total (69)
105
 
106
 
@@ -122,29 +122,13 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
122
  import torch
123
 
124
  import qai_hub as hub
125
- from qai_hub_models.models.posenet_mobilenet import Model
126
 
127
  # Load the model
128
- torch_model = Model.from_pretrained()
129
 
130
  # Device
131
  device = hub.Device("Samsung Galaxy S23")
132
 
133
- # Trace model
134
- input_shape = torch_model.get_input_spec()
135
- sample_inputs = torch_model.sample_inputs()
136
-
137
- pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
138
-
139
- # Compile model on a specific device
140
- compile_job = hub.submit_compile_job(
141
- model=pt_model,
142
- device=device,
143
- input_specs=torch_model.get_input_spec(),
144
- )
145
-
146
- # Get target model to run on-device
147
- target_model = compile_job.get_target_model()
148
 
149
  ```
150
 
@@ -157,10 +141,10 @@ provisioned in the cloud. Once the job is submitted, you can navigate to a
157
  provided job URL to view a variety of on-device performance metrics.
158
  ```python
159
  profile_job = hub.submit_profile_job(
160
- model=target_model,
161
- device=device,
162
- )
163
-
164
  ```
165
 
166
  Step 3: **Verify on-device accuracy**
@@ -170,12 +154,11 @@ on sample input data on the same cloud hosted device.
170
  ```python
171
  input_data = torch_model.sample_inputs()
172
  inference_job = hub.submit_inference_job(
173
- model=target_model,
174
- device=device,
175
- inputs=input_data,
176
- )
177
-
178
- on_device_output = inference_job.download_output_data()
179
 
180
  ```
181
  With the output of the model, you can compute like PSNR, relative errors or
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.399 ms | 0 - 1 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.449 ms | 0 - 22 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so)
41
 
42
 
43
 
 
98
  ```
99
  Profile Job summary of Posenet-Mobilenet
100
  --------------------------------------------------
101
+ Device: Snapdragon X Elite CRD (11)
102
+ Estimated Inference Time: 1.56 ms
103
+ Estimated Peak Memory Range: 1.52-1.52 MB
104
  Compute Units: NPU (69) | Total (69)
105
 
106
 
 
122
  import torch
123
 
124
  import qai_hub as hub
125
+ from qai_hub_models.models.posenet_mobilenet import
126
 
127
  # Load the model
 
128
 
129
  # Device
130
  device = hub.Device("Samsung Galaxy S23")
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
  ```
134
 
 
141
  provided job URL to view a variety of on-device performance metrics.
142
  ```python
143
  profile_job = hub.submit_profile_job(
144
+ model=target_model,
145
+ device=device,
146
+ )
147
+
148
  ```
149
 
150
  Step 3: **Verify on-device accuracy**
 
154
  ```python
155
  input_data = torch_model.sample_inputs()
156
  inference_job = hub.submit_inference_job(
157
+ model=target_model,
158
+ device=device,
159
+ inputs=input_data,
160
+ )
161
+ on_device_output = inference_job.download_output_data()
 
162
 
163
  ```
164
  With the output of the model, you can compute like PSNR, relative errors or