qaihm-bot commited on
Commit
664dc30
·
verified ·
1 Parent(s): 544d641

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +11 -5
README.md CHANGED
@@ -2,7 +2,7 @@
2
  datasets:
3
  - coco
4
  library_name: pytorch
5
- license: other
6
  pipeline_tag: image-classification
7
  tags:
8
  - android
@@ -27,15 +27,18 @@ More details on model performance across various devices, can be found
27
  - **Model Type:** Pose estimation
28
  - **Model Stats:**
29
  - Model checkpoint: mobilenet_v1_101
30
- - Input resolution: 257x193
31
  - Number of parameters: 3.31M
32
  - Model size: 12.7 MB
33
 
34
 
 
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
  | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.387 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite)
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.436 ms | 0 - 65 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so)
 
39
 
40
 
41
  ## Installation
@@ -102,9 +105,11 @@ Compute Units: NPU (69) | Total (69)
102
 
103
 
104
  ```
 
 
105
  ## How does this work?
106
 
107
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Posenet-Mobilenet/export.py)
108
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
109
  on-device. Lets go through each step below in detail:
110
 
@@ -181,6 +186,7 @@ spot check the output with expected output.
181
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
182
 
183
 
 
184
  ## Run demo on a cloud-hosted device
185
 
186
  You can also run the demo on-device.
@@ -217,7 +223,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
217
  ## License
218
  - The license for the original implementation of Posenet-Mobilenet can be found
219
  [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
220
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
221
 
222
  ## References
223
  * [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
 
2
  datasets:
3
  - coco
4
  library_name: pytorch
5
+ license: apache-2.0
6
  pipeline_tag: image-classification
7
  tags:
8
  - android
 
27
  - **Model Type:** Pose estimation
28
  - **Model Stats:**
29
  - Model checkpoint: mobilenet_v1_101
30
+ - Input resolution: 513x257
31
  - Number of parameters: 3.31M
32
  - Model size: 12.7 MB
33
 
34
 
35
+
36
+
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
  | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.387 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.439 ms | 0 - 23 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so)
41
+
42
 
43
 
44
  ## Installation
 
105
 
106
 
107
  ```
108
+
109
+
110
  ## How does this work?
111
 
112
+ This [export script](https://aihub.qualcomm.com/models/posenet_mobilenet/qai_hub_models/models/Posenet-Mobilenet/export.py)
113
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
114
  on-device. Lets go through each step below in detail:
115
 
 
186
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
187
 
188
 
189
+
190
  ## Run demo on a cloud-hosted device
191
 
192
  You can also run the demo on-device.
 
223
  ## License
224
  - The license for the original implementation of Posenet-Mobilenet can be found
225
  [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
226
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
227
 
228
  ## References
229
  * [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)