qaihm-bot commited on
Commit
bd49f90
1 Parent(s): 74b6e36

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +8 -2
README.md CHANGED
@@ -34,6 +34,8 @@ More details on model performance across various devices, can be found
34
  - Model size: 1GB
35
 
36
 
 
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
  | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 21.604 ms | 0 - 93 MB | INT8 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoder_Quantized.bin)
@@ -41,6 +43,7 @@ More details on model performance across various devices, can be found
41
  | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 220.629 ms | 0 - 3 MB | INT8 | NPU | [UNet_Quantized.bin](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UNet_Quantized.bin)
42
 
43
 
 
44
  ## Installation
45
 
46
  This model can be installed as a Python package via pip.
@@ -120,9 +123,11 @@ Compute Units: NPU (6753) | Total (6753)
120
 
121
 
122
  ```
 
 
123
  ## How does this work?
124
 
125
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Stable-Diffusion-v2.1/export.py)
126
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
127
  on-device. Lets go through each step below in detail:
128
 
@@ -208,6 +213,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
208
 
209
 
210
 
 
211
  ## Deploying compiled model to Android
212
 
213
 
@@ -229,7 +235,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
229
  ## License
230
  - The license for the original implementation of Stable-Diffusion-v2.1 can be found
231
  [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
232
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
233
 
234
  ## References
235
  * [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
 
34
  - Model size: 1GB
35
 
36
 
37
+
38
+
39
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
40
  | ---|---|---|---|---|---|---|---|
41
  | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 21.604 ms | 0 - 93 MB | INT8 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoder_Quantized.bin)
 
43
  | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 220.629 ms | 0 - 3 MB | INT8 | NPU | [UNet_Quantized.bin](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UNet_Quantized.bin)
44
 
45
 
46
+
47
  ## Installation
48
 
49
  This model can be installed as a Python package via pip.
 
123
 
124
 
125
  ```
126
+
127
+
128
  ## How does this work?
129
 
130
+ This [export script](https://aihub.qualcomm.com/models/stable_diffusion_v2_1_quantized/qai_hub_models/models/Stable-Diffusion-v2.1/export.py)
131
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
132
  on-device. Lets go through each step below in detail:
133
 
 
213
 
214
 
215
 
216
+
217
  ## Deploying compiled model to Android
218
 
219
 
 
235
  ## License
236
  - The license for the original implementation of Stable-Diffusion-v2.1 can be found
237
  [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
238
+ - The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)
239
 
240
  ## References
241
  * [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)