Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -34,6 +34,8 @@ More details on model performance across various devices, can be found
|
|
34 |
- Model size: 1GB
|
35 |
|
36 |
|
|
|
|
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 21.604 ms | 0 - 93 MB | INT8 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoder_Quantized.bin)
|
@@ -41,6 +43,7 @@ More details on model performance across various devices, can be found
|
|
41 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 220.629 ms | 0 - 3 MB | INT8 | NPU | [UNet_Quantized.bin](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UNet_Quantized.bin)
|
42 |
|
43 |
|
|
|
44 |
## Installation
|
45 |
|
46 |
This model can be installed as a Python package via pip.
|
@@ -120,9 +123,11 @@ Compute Units: NPU (6753) | Total (6753)
|
|
120 |
|
121 |
|
122 |
```
|
|
|
|
|
123 |
## How does this work?
|
124 |
|
125 |
-
This [export script](https://
|
126 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
127 |
on-device. Lets go through each step below in detail:
|
128 |
|
@@ -208,6 +213,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
208 |
|
209 |
|
210 |
|
|
|
211 |
## Deploying compiled model to Android
|
212 |
|
213 |
|
@@ -229,7 +235,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
229 |
## License
|
230 |
- The license for the original implementation of Stable-Diffusion-v2.1 can be found
|
231 |
[here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
|
232 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
233 |
|
234 |
## References
|
235 |
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
|
|
|
34 |
- Model size: 1GB
|
35 |
|
36 |
|
37 |
+
|
38 |
+
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 21.604 ms | 0 - 93 MB | INT8 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoder_Quantized.bin)
|
|
|
43 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 220.629 ms | 0 - 3 MB | INT8 | NPU | [UNet_Quantized.bin](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UNet_Quantized.bin)
|
44 |
|
45 |
|
46 |
+
|
47 |
## Installation
|
48 |
|
49 |
This model can be installed as a Python package via pip.
|
|
|
123 |
|
124 |
|
125 |
```
|
126 |
+
|
127 |
+
|
128 |
## How does this work?
|
129 |
|
130 |
+
This [export script](https://aihub.qualcomm.com/models/stable_diffusion_v2_1_quantized/qai_hub_models/models/Stable-Diffusion-v2.1/export.py)
|
131 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
132 |
on-device. Lets go through each step below in detail:
|
133 |
|
|
|
213 |
|
214 |
|
215 |
|
216 |
+
|
217 |
## Deploying compiled model to Android
|
218 |
|
219 |
|
|
|
235 |
## License
|
236 |
- The license for the original implementation of Stable-Diffusion-v2.1 can be found
|
237 |
[here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
|
238 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)
|
239 |
|
240 |
## References
|
241 |
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
|