qaihm-bot commited on
Commit
be78927
·
verified ·
1 Parent(s): dd3cd34

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +40 -116
README.md CHANGED
@@ -18,11 +18,9 @@ tags:
18
 
19
  YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.
20
 
21
- This model is an implementation of Yolo-NAS-Quantized found [here](https://github.com/Deci-AI/super-gradients).
22
- This repository provides scripts to run Yolo-NAS-Quantized on Qualcomm® devices.
23
- More details on model performance across various devices, can be found
24
- [here](https://aihub.qualcomm.com/models/yolonas_quantized).
25
-
26
 
27
  ### Model Details
28
 
@@ -33,128 +31,54 @@ More details on model performance across various devices, can be found
33
  - Number of parameters: 12.2M
34
  - Model size: 12.1 MB
35
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
 
38
 
39
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
40
- | ---|---|---|---|---|---|---|---|
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 4.789 ms | 0 - 13 MB | INT8 | NPU | [Yolo-NAS-Quantized.tflite](https://huggingface.co/qualcomm/Yolo-NAS-Quantized/blob/main/Yolo-NAS-Quantized.tflite)
42
-
43
-
44
-
45
- ## Installation
46
-
47
- This model can be installed as a Python package via pip.
48
-
49
- ```bash
50
- pip install "qai-hub-models[yolonas_quantized]"
51
- ```
52
-
53
-
54
-
55
- ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
56
-
57
- Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
58
- Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
59
-
60
- With this API token, you can configure your client to run models on the cloud
61
- hosted devices.
62
- ```bash
63
- qai-hub configure --api_token API_TOKEN
64
- ```
65
- Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
66
-
67
-
68
-
69
- ## Demo off target
70
-
71
- The package contains a simple end-to-end demo that downloads pre-trained
72
- weights and runs this model on a sample input.
73
-
74
- ```bash
75
- python -m qai_hub_models.models.yolonas_quantized.demo
76
- ```
77
-
78
- The above demo runs a reference implementation of pre-processing, model
79
- inference, and post processing.
80
-
81
- **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
82
- environment, please add the following to your cell (instead of the above).
83
- ```
84
- %run -m qai_hub_models.models.yolonas_quantized.demo
85
- ```
86
-
87
-
88
- ### Run model on a cloud-hosted device
89
-
90
- In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
91
- device. This script does the following:
92
- * Performance check on-device on a cloud-hosted device
93
- * Downloads compiled assets that can be deployed on-device for Android.
94
- * Accuracy check between PyTorch and on-device outputs.
95
-
96
- ```bash
97
- python -m qai_hub_models.models.yolonas_quantized.export
98
- ```
99
-
100
- ```
101
- Profile Job summary of Yolo-NAS-Quantized
102
- --------------------------------------------------
103
- Device: RB3 Gen 2 (Proxy) (12)
104
- Estimated Inference Time: 13.95 ms
105
- Estimated Peak Memory Range: 0.07-66.05 MB
106
- Compute Units: NPU (204) | Total (204)
107
-
108
-
109
- ```
110
-
111
-
112
-
113
-
114
- ## Run demo on a cloud-hosted device
115
-
116
- You can also run the demo on-device.
117
-
118
- ```bash
119
- python -m qai_hub_models.models.yolonas_quantized.demo --on-device
120
- ```
121
-
122
- **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
123
- environment, please add the following to your cell (instead of the above).
124
- ```
125
- %run -m qai_hub_models.models.yolonas_quantized.demo -- --on-device
126
- ```
127
-
128
-
129
- ## Deploying compiled model to Android
130
-
131
-
132
- The models can be deployed using multiple runtimes:
133
- - TensorFlow Lite (`.tflite` export): [This
134
- tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
135
- guide to deploy the .tflite model in an Android application.
136
-
137
-
138
- - QNN (`.so` export ): This [sample
139
- app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
140
- provides instructions on how to use the `.so` shared library in an Android application.
141
 
 
 
 
142
 
143
- ## View on Qualcomm® AI Hub
144
- Get more details on Yolo-NAS-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/yolonas_quantized).
145
- Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
146
 
147
- ## License
148
- - The license for the original implementation of Yolo-NAS-Quantized can be found
149
- [here](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md#license).
150
- - The license for the compiled assets for on-device deployment can be found [here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.YOLONAS.md)
151
 
152
  ## References
153
  * [YOLO-NAS by Deci Achieves SOTA Performance on Object Detection Using Neural Architecture Search](https://deci.ai/blog/yolo-nas-object-detection-foundation-model/)
154
  * [Source Model Implementation](https://github.com/Deci-AI/super-gradients)
155
 
 
 
156
  ## Community
157
- * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
158
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
159
 
160
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.
20
 
21
+ This is based on the implementation of Yolo-NAS-Quantized found
22
+ [here]({source_repo}). More details on model performance
23
+ accross various devices, can be found [here](https://aihub.qualcomm.com/models/yolonas_quantized).
 
 
24
 
25
  ### Model Details
26
 
 
31
  - Number of parameters: 12.2M
32
  - Model size: 12.1 MB
33
 
34
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
+ |---|---|---|---|---|---|---|---|---|
36
+ | Yolo-NAS-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 4.715 ms | 0 - 2 MB | INT8 | NPU | -- |
37
+ | Yolo-NAS-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.058 ms | 0 - 80 MB | INT8 | NPU | -- |
38
+ | Yolo-NAS-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 13.608 ms | 0 - 66 MB | INT8 | NPU | -- |
39
+ | Yolo-NAS-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 4.692 ms | 0 - 1 MB | INT8 | NPU | -- |
40
+ | Yolo-NAS-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.704 ms | 0 - 4 MB | INT8 | NPU | -- |
41
+ | Yolo-NAS-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 4.696 ms | 0 - 7 MB | INT8 | NPU | -- |
42
+ | Yolo-NAS-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.69 ms | 0 - 17 MB | INT8 | NPU | -- |
43
+ | Yolo-NAS-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.202 ms | 0 - 82 MB | INT8 | NPU | -- |
44
+ | Yolo-NAS-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.157 ms | 0 - 55 MB | INT8 | NPU | -- |
45
 
46
 
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ ## License
50
+ * The license for the original implementation of Yolo-NAS-Quantized can be found [here](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md#license).
51
+ * The license for the compiled assets for on-device deployment can be found [here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.YOLONAS.md)
52
 
 
 
 
53
 
 
 
 
 
54
 
55
  ## References
56
  * [YOLO-NAS by Deci Achieves SOTA Performance on Object Detection Using Neural Architecture Search](https://deci.ai/blog/yolo-nas-object-detection-foundation-model/)
57
  * [Source Model Implementation](https://github.com/Deci-AI/super-gradients)
58
 
59
+
60
+
61
  ## Community
62
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
63
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
64
 
65
+ ## Usage and Limitations
66
+
67
+ Model may not be used for or in connection with any of the following applications:
68
+
69
+ - Accessing essential private and public services and benefits;
70
+ - Administration of justice and democratic processes;
71
+ - Assessing or recognizing the emotional state of a person;
72
+ - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
73
+ - Education and vocational training;
74
+ - Employment and workers management;
75
+ - Exploitation of the vulnerabilities of persons resulting in harmful behavior;
76
+ - General purpose social scoring;
77
+ - Law enforcement;
78
+ - Management and operation of critical infrastructure;
79
+ - Migration, asylum and border control management;
80
+ - Predictive policing;
81
+ - Real-time remote biometric identification in public spaces;
82
+ - Recommender systems of social media platforms;
83
+ - Scraping of facial images (from the internet or otherwise); and/or
84
+ - Subliminal manipulation