alibert-quinten commited on
Commit
6850efc
1 Parent(s): e919f92

Update README.md

Browse files

Description of corpus updated.

Files changed (1) hide show
  1. README.md +6 -31
README.md CHANGED
@@ -45,16 +45,9 @@ Here are the main contributions of our work:
45
  The Paper can be found here: https://aclanthology.org/2023.bionlp-1.19/
46
 
47
  # Data
48
- The pre-training corpus was gathered from different sub-corpora.It is composed of 7GB French biomedical textual documents. Here are the sources used.
 
49
 
50
- |Dataset name| Quantity| Size |
51
- |----|---|---|
52
- |Drug leaflets (Base de données publique des médicament)| 23K| 550Mb |
53
- |RCP (a French equivalent of Physician’s Desk Reference)| 35K| 2200Mb|
54
- |Articles (biomedical articles from ScienceDirect)| 500K| 4300Mb |
55
- |Thesis (Thesis manuscripts in French)| 300K|300Mb |
56
- |Cochrane (articles from Cochrane database)| 7.6K| 27Mb|
57
- *Table 1: Pretraining dataset*
58
 
59
  # How to use alibert-quinten/Oncology-NER with HuggingFace
60
 
@@ -115,28 +108,10 @@ The model is evaluated on two (CAS and QUAERO) publically available Frech biomed
115
  </thead>
116
  <tbody>
117
  <tr>
118
- <td>Entities</td>
119
- <td>P<br></td>
120
- <td>R</td>
121
- <td>F1</td>
122
- <td>P<br></td>
123
- <td>R</td>
124
- <td>F1</td>
125
- <td>P<br></td>
126
- <td>R</td>
127
- <td>F1</td>
128
  </tr>
129
  <tr>
130
- <td>Substance</td>
131
- <td>0.96</td>
132
- <td>0.87</td>
133
- <td>0.91</td>
134
- <td>0.96</td>
135
- <td>0.91</td>
136
- <td>0.93</td>
137
- <td>0.83</td>
138
- <td>0.83</td>
139
- <td>0.82</td>
140
  </tr>
141
  <tr>
142
  <td>Symptom</td> <td>0.89</td> <td>0.91</td> <td>0.90</td> <td>0.96</td> <td>0.98</td> <td>0.97</td> <td>0.93</td> <td>0.90</td> <td>0.91</td>
@@ -155,7 +130,7 @@ The model is evaluated on two (CAS and QUAERO) publically available Frech biomed
155
  </tr>
156
  </tbody>
157
  </table>
158
- Table 2: NER performances on CAS dataset
159
 
160
  #### QUAERO dataset
161
 
@@ -192,6 +167,6 @@ Table 2: NER performances on CAS dataset
192
  </tr>
193
  </tbody>
194
  </table>
195
- Table 3: NER performances on QUAERO dataset
196
 
197
  ##AliBERT: A Pre-trained Language Model for French Biomedical Text
 
45
  The Paper can be found here: https://aclanthology.org/2023.bionlp-1.19/
46
 
47
  # Data
48
+ The pre-training corpus was gathered from different sub-corpora. It is composed of 7GB French biomedical textual documents. The corpora were collected from different sources. Scientific articles are collected from ScienceDirect using an API provided on subscription and where French articles in biomedical domain were selected. The summaries of thesis manuscripts are collected from "Système universitaire de documentation (SuDoc)" which is a catalog of universities documentation system. Short texts and some complete sentences were collected from the public drug database which lists the characteristics of tens of thousands of drugs. Furthermore, a similar drug database known as "Résumé des Caractéristiques du Produit (RCP)" is also used to represent a description of medications that are intended to be utilized by biomedicine professionals.
49
+
50
 
 
 
 
 
 
 
 
 
51
 
52
  # How to use alibert-quinten/Oncology-NER with HuggingFace
53
 
 
108
  </thead>
109
  <tbody>
110
  <tr>
111
+ <td>Entities</td><td>P<br></td><td>R</td><td>F1</td><td>P<br></td><td>R</td><td>F1</td><td>P<br></td><td>R</td><td>F1</td>
 
 
 
 
 
 
 
 
 
112
  </tr>
113
  <tr>
114
+ <td>Substance</td><td>0.96</td><td>0.87</td><td>0.91</td><td>0.96</td><td>0.91</td><td>0.93</td><td>0.83</td><td>0.83</td><td>0.82</td>
 
 
 
 
 
 
 
 
 
115
  </tr>
116
  <tr>
117
  <td>Symptom</td> <td>0.89</td> <td>0.91</td> <td>0.90</td> <td>0.96</td> <td>0.98</td> <td>0.97</td> <td>0.93</td> <td>0.90</td> <td>0.91</td>
 
130
  </tr>
131
  </tbody>
132
  </table>
133
+ Table 1: NER performances on CAS dataset
134
 
135
  #### QUAERO dataset
136
 
 
167
  </tr>
168
  </tbody>
169
  </table>
170
+ Table 2: NER performances on QUAERO dataset
171
 
172
  ##AliBERT: A Pre-trained Language Model for French Biomedical Text