Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1825.63 +/- 94.90
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a19f333493b1da795f4d798a2f5106f63a5334e547ef74cb7a0f5751a322f4ac
|
3 |
+
size 129273
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc97248670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc97248700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc97248790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc97248820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbc972488b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbc97248940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbc972489d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc97248a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbc97248af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc97248b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc97248c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc97248ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fbc97241580>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677948622940320344,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL25lby9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvbmVvL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAETP4z+aOb8+I+f0PiXVaj8FbuM99TTyvgDa5b9sY9G/K7jvvzowhD6FEqM+FM/7vyhNSr/jKYA/7NMuP5Deyb6226O/N4DWPxdn3L6M496/TqeaPz2UAMDENye/iwlkP+v9bb9MLhc/Jh4RP2PAbb80WEo/5TwOv+gTyT6YLsM/zcYpvwAX2D633fg9G4uuvv1FrL1UpLU+lvyyP44M9z4rs64+c9HvvxuDkr6qZcK/4SjgvgRSsL/ICKm92/yMP0KMbj9W/LM+9BQLv6x43b91r4k/TC4XPyYeET9jwG2/XcSpPvHsjr0ZbQQ/A5PRPpybZD+E4ww+SeIXP6ghFL9Y8a292S0AQHYoyj+GSJM+eK+0PwPpFr8DdV4+l0KNP+yk2T6hk+u+VQWyPmayXT/PgR8/rWeWP+fyab9Ghsq/da+JP0wuFz8mHhE/Y8Btv8ZzGr4MVcG/Y9TvvkX3Az0Xi5u/f+0gv0doWr+XAJE/0x8cP/skPr6cRyC/I5ZwPUJ9kL/PGsy/ae8fPip9R7+9cLs8RXIEv1EYor8ZNAE+ZwOzPWs27z/FDH89kYgBwHWviT9MLhc/Jh4RP2PAbb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADfQDG3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2vD4PQAAAAAPGvO/AAAAACUb+70AAAAAnKTsPwAAAAD4p4u9AAAAAOHs4T8AAAAAC2cSPgAAAACztve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+rWMMgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJyasLwAAAAAdVHfvwAAAAARQ6O9AAAAANQm4z8AAAAAMladPQAAAACBjek/AAAAADrFnzwAAAAAemzxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/E8LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBvP2C9AAAAANZR+b8AAAAAGSvWvAAAAAC0YO4/AAAAAI4n570AAAAAXY/aPwAAAAAduDi8AAAAABEX678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACm6Wg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAS64vQAAAABJh+q/AAAAAKhpALwAAAAACVX5PwAAAACGkp49AAAAAFab/j8AAAAA4qEXPAAAAACmn/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxd3MdLg4yMAWyUTegDjAF0lEdAs0yEcGTs6nV9lChoBkdAnJaDNdJJ5GgHTegDaAhHQLNNoQEpy6t1fZQoaAZHQJyC5ymygPFoB03oA2gIR0CzTgQRwqAjdX2UKGgGR0CbieAuqWC3aAdN6ANoCEdAs1Ea2iL2pXV9lChoBkdAnBdrm2b5M2gHTegDaAhHQLNWQ3oLXtl1fZQoaAZHQJtdmptJnQJoB03oA2gIR0CzVyqsEJSjdX2UKGgGR0CdNZ19ORDDaAdN6ANoCEdAs1emll9SdnV9lChoBkdAnAfrQb+98WgHTegDaAhHQLNa1uez2OB1fZQoaAZHQJvoQwco6S1oB03oA2gIR0CzYFUjkdWAdX2UKGgGR0Cbd/XhwVCYaAdN6ANoCEdAs2Fvs3Q2M3V9lChoBkdAmz2OgDifhGgHTegDaAhHQLNh0nk1dgR1fZQoaAZHQJQh+VNYbKloB03oA2gIR0CzZRf1L8JldX2UKGgGR0CbrZvR7Z3+aAdN6ANoCEdAs2o4GUwBYHV9lChoBkdAmTrre67NCGgHTegDaAhHQLNrRFR51Nh1fZQoaAZHQJrVRK5CngpoB03oA2gIR0Cza6wnMMZxdX2UKGgGR0CcuTsfaHsUaAdN6ANoCEdAs26EpXp4bHV9lChoBkdAl5fTjR2KVWgHTegDaAhHQLNzX704BFN1fZQoaAZHQJg+dbA1vVFoB03oA2gIR0CzdFgWzniedX2UKGgGR0CZCRaiblRxaAdN6ANoCEdAs3TQUg0TDnV9lChoBkdAmV5BOgxrSGgHTegDaAhHQLN4EOTaCcx1fZQoaAZHQJlIbWy1NQFoB03oA2gIR0CzfVv3evZAdX2UKGgGR0CZPRMLF4s3aAdN6ANoCEdAs353AfuCw3V9lChoBkdAmLqVqveP72gHTegDaAhHQLN+5h8IAwR1fZQoaAZHQJyHH8EV32VoB03oA2gIR0CzgnrbYbsGdX2UKGgGR0CcoselsP8RaAdN6ANoCEdAs4fOSt/4I3V9lChoBkdAnJTKi48U22gHTegDaAhHQLOI6PgvUSZ1fZQoaAZHQJ1LyOAAhjhoB03oA2gIR0CziVI/iYLLdX2UKGgGR0CfUZp4bCJoaAdN6ANoCEdAs4yK/1xsEnV9lChoBkdAns0/hVENOWgHTegDaAhHQLOSLAlv60p1fZQoaAZHQJxfcELYwqRoB03oA2gIR0CzkyV3t8eCdX2UKGgGR0Ccn1dcB2fTaAdN6ANoCEdAs5Ob8R+SbHV9lChoBkdAmKmBqj8DS2gHTegDaAhHQLOXAH0btJF1fZQoaAZHQJxBMUvf0mNoB03oA2gIR0CznGwdOqNqdX2UKGgGR0CY9GWM0gr6aAdN6ANoCEdAs52JnM+u/3V9lChoBkdAnHzi5mRNh2gHTegDaAhHQLOd70Ltu1p1fZQoaAZHQJrKaKziS7poB03oA2gIR0CzoRatYB/7dX2UKGgGR0CeKYWnTAnEaAdN6ANoCEdAs6ZPwUg0THV9lChoBkdAmeBxnSOR1WgHTegDaAhHQLOnYb+Lm6p1fZQoaAZHQJj/BhfBvaVoB03oA2gIR0Czp8bqUu+RdX2UKGgGR0CX+NTS9du6aAdN6ANoCEdAs6skqlP8AXV9lChoBkdAnbxw9q1w52gHTegDaAhHQLOwpw7T2Fp1fZQoaAZHQJ4ngUahpQFoB03oA2gIR0CzscEfLcKxdX2UKGgGR0CbsVF72L5zaAdN6ANoCEdAs7I5T2nKn3V9lChoBkdAnVcZBgNPQGgHTegDaAhHQLO1qiF0xM51fZQoaAZHQJq8nzSThYNoB03oA2gIR0CzuxEDlo12dX2UKGgGR0CfvH+YtxuLaAdN6ANoCEdAs7wjJT2nKnV9lChoBkdAmXibdznzQWgHTegDaAhHQLO8gGBWge11fZQoaAZHQJ1Aob83uNRoB03oA2gIR0Czv66iKziTdX2UKGgGR0CfwaEkjX4CaAdN6ANoCEdAs8VCW8h9s3V9lChoBkdAnXRVX/5tWWgHTegDaAhHQLPGRFLFn7J1fZQoaAZHQJt+6OyVv/BoB03oA2gIR0CzxrH8fmtAdX2UKGgGR0CbXOTtsvZiaAdN6ANoCEdAs8oPdl/YrnV9lChoBkdAnDXURvm5lWgHTegDaAhHQLPPX+m3vx91fZQoaAZHQJpqVnL7oB9oB03oA2gIR0Cz0EPp6hQFdX2UKGgGR0CdPo925hBraAdN6ANoCEdAs9C751vETHV9lChoBkdAm+AxE8aGYmgHTegDaAhHQLPT9aLn9vV1fZQoaAZHQJ3ZNs54nndoB03oA2gIR0Cz2WRRIjGDdX2UKGgGR0CgDrXJPqLTaAdN6ANoCEdAs9pjQE6kqXV9lChoBkdAnDuR8D0UXmgHTegDaAhHQLPayvOhTOx1fZQoaAZHQJ/K6sEJSixoB03oA2gIR0Cz3hmll9SddX2UKGgGR0CflN4VRDTjaAdN6ANoCEdAs+OdGG21D3V9lChoBkdAnVlqQV9F4WgHTegDaAhHQLPkjxVQyh11fZQoaAZHQJvvO3hGYrtoB03oA2gIR0Cz5O6qbSZ0dX2UKGgGR0CfLvy/bj95aAdN6ANoCEdAs+hG5avA5HV9lChoBkdAnaE5dSl3yWgHTegDaAhHQLPt0yvs7dV1fZQoaAZHQKAtz3eN1hdoB03oA2gIR0Cz7uluR9w4dX2UKGgGR0CdZ8IGQjlgaAdN6ANoCEdAs+9LatcOb3V9lChoBkdAn7Tci0OVgWgHTegDaAhHQLPyoumaYu11fZQoaAZHQJl2YKSgXdloB03oA2gIR0Cz+BTiOvMbdX2UKGgGR0Cc/ieenQ6ZaAdN6ANoCEdAs/km4rjHXHV9lChoBkdAn7Hd5IH1OGgHTegDaAhHQLP5iw2ETQF1fZQoaAZHQJb2p+NLlFNoB03oA2gIR0Cz/NonOSntdX2UKGgGR0Cb3oMo+fRNaAdN6ANoCEdAtAK7EzfrKXV9lChoBkdAnr5sz2vjfmgHTegDaAhHQLQDuNFjNIN1fZQoaAZHQJl0p5IH1OFoB03oA2gIR0C0BEiSvC/HdX2UKGgGR0CYAD68QI2PaAdN6ANoCEdAtAd8l5WzW3V9lChoBkdAnVpeBUaQ3mgHTegDaAhHQLQMoTs6aLJ1fZQoaAZHQJ6ekkxASnNoB03oA2gIR0C0DbIgV45cdX2UKGgGR0CcaxMOf/WEaAdN6ANoCEdAtA4lcRlH0HV9lChoBkdAnVHYJE6T4mgHTegDaAhHQLQRSHkcS5B1fZQoaAZHQJ1MJrZamoBoB03oA2gIR0C0FpFYhdMTdX2UKGgGR0CfaspCrtE5aAdN6ANoCEdAtBd9O8Cgb3V9lChoBkdAn8JphKDkEWgHTegDaAhHQLQX7XaakRB1fZQoaAZHQJ04iQeV9ndoB03oA2gIR0C0GxGeg+QmdX2UKGgGR0CfDPAoXsPbaAdN6ANoCEdAtCBoFHJ9zHV9lChoBkdAmTxHiNsFdWgHTegDaAhHQLQhXk2xY7t1fZQoaAZHQJ0cm6bvw3JoB03oA2gIR0C0IcHSF49pdX2UKGgGR0CekNDb8FY/aAdN6ANoCEdAtCS8jfNzKnV9lChoBkdAnXqFxn3+M2gHTegDaAhHQLQqV6nBLwp1fZQoaAZHQJ43++PBBRhoB03oA2gIR0C0K4hePaL5dX2UKGgGR0Cc5W/Aj6eoaAdN6ANoCEdAtCv6iYb833V9lChoBkdAmdXwCbMHKWgHTegDaAhHQLQvSDSgGr11fZQoaAZHQJ2qzjS5RTFoB03oA2gIR0C0NKh0MgEEdX2UKGgGR0Cc5ncmjTKDaAdN6ANoCEdAtDWhDx9XtHV9lChoBkdAnSisVtXPq2gHTegDaAhHQLQ2IWu5jH51fZQoaAZHQJ8UrZdv865oB03oA2gIR0C0ObYc3l0YdX2UKGgGR0CeKqqSX+l1aAdN6ANoCEdAtD9bCO3lS3V9lChoBkdAnnuvAO8TSWgHTegDaAhHQLRAX3wkPc11fZQoaAZHQJ7D9JlJ6IFoB03oA2gIR0C0QOyHh0hedX2UKGgGR0CfSZB9Tgl4aAdN6ANoCEdAtEQ9dMTN+3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c8c37d0c8bf61bb86456a6fd1f067bcf641f1c36a42bd78f18d261e6f6343c5
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8acbdec3b173539b7c4e4a6a89e2629741e4b9daf3fa48de6bf0ba1cc3872b0
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.10.8
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc97248670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc97248700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc97248790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc97248820>", "_build": "<function ActorCriticPolicy._build at 0x7fbc972488b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbc97248940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbc972489d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc97248a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbc97248af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc97248b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc97248c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc97248ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbc97241580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677948622940320344, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL25lby9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvbmVvL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAETP4z+aOb8+I+f0PiXVaj8FbuM99TTyvgDa5b9sY9G/K7jvvzowhD6FEqM+FM/7vyhNSr/jKYA/7NMuP5Deyb6226O/N4DWPxdn3L6M496/TqeaPz2UAMDENye/iwlkP+v9bb9MLhc/Jh4RP2PAbb80WEo/5TwOv+gTyT6YLsM/zcYpvwAX2D633fg9G4uuvv1FrL1UpLU+lvyyP44M9z4rs64+c9HvvxuDkr6qZcK/4SjgvgRSsL/ICKm92/yMP0KMbj9W/LM+9BQLv6x43b91r4k/TC4XPyYeET9jwG2/XcSpPvHsjr0ZbQQ/A5PRPpybZD+E4ww+SeIXP6ghFL9Y8a292S0AQHYoyj+GSJM+eK+0PwPpFr8DdV4+l0KNP+yk2T6hk+u+VQWyPmayXT/PgR8/rWeWP+fyab9Ghsq/da+JP0wuFz8mHhE/Y8Btv8ZzGr4MVcG/Y9TvvkX3Az0Xi5u/f+0gv0doWr+XAJE/0x8cP/skPr6cRyC/I5ZwPUJ9kL/PGsy/ae8fPip9R7+9cLs8RXIEv1EYor8ZNAE+ZwOzPWs27z/FDH89kYgBwHWviT9MLhc/Jh4RP2PAbb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADfQDG3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2vD4PQAAAAAPGvO/AAAAACUb+70AAAAAnKTsPwAAAAD4p4u9AAAAAOHs4T8AAAAAC2cSPgAAAACztve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+rWMMgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJyasLwAAAAAdVHfvwAAAAARQ6O9AAAAANQm4z8AAAAAMladPQAAAACBjek/AAAAADrFnzwAAAAAemzxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/E8LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBvP2C9AAAAANZR+b8AAAAAGSvWvAAAAAC0YO4/AAAAAI4n570AAAAAXY/aPwAAAAAduDi8AAAAABEX678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACm6Wg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAS64vQAAAABJh+q/AAAAAKhpALwAAAAACVX5PwAAAACGkp49AAAAAFab/j8AAAAA4qEXPAAAAACmn/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxd3MdLg4yMAWyUTegDjAF0lEdAs0yEcGTs6nV9lChoBkdAnJaDNdJJ5GgHTegDaAhHQLNNoQEpy6t1fZQoaAZHQJyC5ymygPFoB03oA2gIR0CzTgQRwqAjdX2UKGgGR0CbieAuqWC3aAdN6ANoCEdAs1Ea2iL2pXV9lChoBkdAnBdrm2b5M2gHTegDaAhHQLNWQ3oLXtl1fZQoaAZHQJtdmptJnQJoB03oA2gIR0CzVyqsEJSjdX2UKGgGR0CdNZ19ORDDaAdN6ANoCEdAs1emll9SdnV9lChoBkdAnAfrQb+98WgHTegDaAhHQLNa1uez2OB1fZQoaAZHQJvoQwco6S1oB03oA2gIR0CzYFUjkdWAdX2UKGgGR0Cbd/XhwVCYaAdN6ANoCEdAs2Fvs3Q2M3V9lChoBkdAmz2OgDifhGgHTegDaAhHQLNh0nk1dgR1fZQoaAZHQJQh+VNYbKloB03oA2gIR0CzZRf1L8JldX2UKGgGR0CbrZvR7Z3+aAdN6ANoCEdAs2o4GUwBYHV9lChoBkdAmTrre67NCGgHTegDaAhHQLNrRFR51Nh1fZQoaAZHQJrVRK5CngpoB03oA2gIR0Cza6wnMMZxdX2UKGgGR0CcuTsfaHsUaAdN6ANoCEdAs26EpXp4bHV9lChoBkdAl5fTjR2KVWgHTegDaAhHQLNzX704BFN1fZQoaAZHQJg+dbA1vVFoB03oA2gIR0CzdFgWzniedX2UKGgGR0CZCRaiblRxaAdN6ANoCEdAs3TQUg0TDnV9lChoBkdAmV5BOgxrSGgHTegDaAhHQLN4EOTaCcx1fZQoaAZHQJlIbWy1NQFoB03oA2gIR0CzfVv3evZAdX2UKGgGR0CZPRMLF4s3aAdN6ANoCEdAs353AfuCw3V9lChoBkdAmLqVqveP72gHTegDaAhHQLN+5h8IAwR1fZQoaAZHQJyHH8EV32VoB03oA2gIR0CzgnrbYbsGdX2UKGgGR0CcoselsP8RaAdN6ANoCEdAs4fOSt/4I3V9lChoBkdAnJTKi48U22gHTegDaAhHQLOI6PgvUSZ1fZQoaAZHQJ1LyOAAhjhoB03oA2gIR0CziVI/iYLLdX2UKGgGR0CfUZp4bCJoaAdN6ANoCEdAs4yK/1xsEnV9lChoBkdAns0/hVENOWgHTegDaAhHQLOSLAlv60p1fZQoaAZHQJxfcELYwqRoB03oA2gIR0CzkyV3t8eCdX2UKGgGR0Ccn1dcB2fTaAdN6ANoCEdAs5Ob8R+SbHV9lChoBkdAmKmBqj8DS2gHTegDaAhHQLOXAH0btJF1fZQoaAZHQJxBMUvf0mNoB03oA2gIR0CznGwdOqNqdX2UKGgGR0CY9GWM0gr6aAdN6ANoCEdAs52JnM+u/3V9lChoBkdAnHzi5mRNh2gHTegDaAhHQLOd70Ltu1p1fZQoaAZHQJrKaKziS7poB03oA2gIR0CzoRatYB/7dX2UKGgGR0CeKYWnTAnEaAdN6ANoCEdAs6ZPwUg0THV9lChoBkdAmeBxnSOR1WgHTegDaAhHQLOnYb+Lm6p1fZQoaAZHQJj/BhfBvaVoB03oA2gIR0Czp8bqUu+RdX2UKGgGR0CX+NTS9du6aAdN6ANoCEdAs6skqlP8AXV9lChoBkdAnbxw9q1w52gHTegDaAhHQLOwpw7T2Fp1fZQoaAZHQJ4ngUahpQFoB03oA2gIR0CzscEfLcKxdX2UKGgGR0CbsVF72L5zaAdN6ANoCEdAs7I5T2nKn3V9lChoBkdAnVcZBgNPQGgHTegDaAhHQLO1qiF0xM51fZQoaAZHQJq8nzSThYNoB03oA2gIR0CzuxEDlo12dX2UKGgGR0CfvH+YtxuLaAdN6ANoCEdAs7wjJT2nKnV9lChoBkdAmXibdznzQWgHTegDaAhHQLO8gGBWge11fZQoaAZHQJ1Aob83uNRoB03oA2gIR0Czv66iKziTdX2UKGgGR0CfwaEkjX4CaAdN6ANoCEdAs8VCW8h9s3V9lChoBkdAnXRVX/5tWWgHTegDaAhHQLPGRFLFn7J1fZQoaAZHQJt+6OyVv/BoB03oA2gIR0CzxrH8fmtAdX2UKGgGR0CbXOTtsvZiaAdN6ANoCEdAs8oPdl/YrnV9lChoBkdAnDXURvm5lWgHTegDaAhHQLPPX+m3vx91fZQoaAZHQJpqVnL7oB9oB03oA2gIR0Cz0EPp6hQFdX2UKGgGR0CdPo925hBraAdN6ANoCEdAs9C751vETHV9lChoBkdAm+AxE8aGYmgHTegDaAhHQLPT9aLn9vV1fZQoaAZHQJ3ZNs54nndoB03oA2gIR0Cz2WRRIjGDdX2UKGgGR0CgDrXJPqLTaAdN6ANoCEdAs9pjQE6kqXV9lChoBkdAnDuR8D0UXmgHTegDaAhHQLPayvOhTOx1fZQoaAZHQJ/K6sEJSixoB03oA2gIR0Cz3hmll9SddX2UKGgGR0CflN4VRDTjaAdN6ANoCEdAs+OdGG21D3V9lChoBkdAnVlqQV9F4WgHTegDaAhHQLPkjxVQyh11fZQoaAZHQJvvO3hGYrtoB03oA2gIR0Cz5O6qbSZ0dX2UKGgGR0CfLvy/bj95aAdN6ANoCEdAs+hG5avA5HV9lChoBkdAnaE5dSl3yWgHTegDaAhHQLPt0yvs7dV1fZQoaAZHQKAtz3eN1hdoB03oA2gIR0Cz7uluR9w4dX2UKGgGR0CdZ8IGQjlgaAdN6ANoCEdAs+9LatcOb3V9lChoBkdAn7Tci0OVgWgHTegDaAhHQLPyoumaYu11fZQoaAZHQJl2YKSgXdloB03oA2gIR0Cz+BTiOvMbdX2UKGgGR0Cc/ieenQ6ZaAdN6ANoCEdAs/km4rjHXHV9lChoBkdAn7Hd5IH1OGgHTegDaAhHQLP5iw2ETQF1fZQoaAZHQJb2p+NLlFNoB03oA2gIR0Cz/NonOSntdX2UKGgGR0Cb3oMo+fRNaAdN6ANoCEdAtAK7EzfrKXV9lChoBkdAnr5sz2vjfmgHTegDaAhHQLQDuNFjNIN1fZQoaAZHQJl0p5IH1OFoB03oA2gIR0C0BEiSvC/HdX2UKGgGR0CYAD68QI2PaAdN6ANoCEdAtAd8l5WzW3V9lChoBkdAnVpeBUaQ3mgHTegDaAhHQLQMoTs6aLJ1fZQoaAZHQJ6ekkxASnNoB03oA2gIR0C0DbIgV45cdX2UKGgGR0CcaxMOf/WEaAdN6ANoCEdAtA4lcRlH0HV9lChoBkdAnVHYJE6T4mgHTegDaAhHQLQRSHkcS5B1fZQoaAZHQJ1MJrZamoBoB03oA2gIR0C0FpFYhdMTdX2UKGgGR0CfaspCrtE5aAdN6ANoCEdAtBd9O8Cgb3V9lChoBkdAn8JphKDkEWgHTegDaAhHQLQX7XaakRB1fZQoaAZHQJ04iQeV9ndoB03oA2gIR0C0GxGeg+QmdX2UKGgGR0CfDPAoXsPbaAdN6ANoCEdAtCBoFHJ9zHV9lChoBkdAmTxHiNsFdWgHTegDaAhHQLQhXk2xY7t1fZQoaAZHQJ0cm6bvw3JoB03oA2gIR0C0IcHSF49pdX2UKGgGR0CekNDb8FY/aAdN6ANoCEdAtCS8jfNzKnV9lChoBkdAnXqFxn3+M2gHTegDaAhHQLQqV6nBLwp1fZQoaAZHQJ43++PBBRhoB03oA2gIR0C0K4hePaL5dX2UKGgGR0Cc5W/Aj6eoaAdN6ANoCEdAtCv6iYb833V9lChoBkdAmdXwCbMHKWgHTegDaAhHQLQvSDSgGr11fZQoaAZHQJ2qzjS5RTFoB03oA2gIR0C0NKh0MgEEdX2UKGgGR0Cc5ncmjTKDaAdN6ANoCEdAtDWhDx9XtHV9lChoBkdAnSisVtXPq2gHTegDaAhHQLQ2IWu5jH51fZQoaAZHQJ8UrZdv865oB03oA2gIR0C0ObYc3l0YdX2UKGgGR0CeKqqSX+l1aAdN6ANoCEdAtD9bCO3lS3V9lChoBkdAnnuvAO8TSWgHTegDaAhHQLRAX3wkPc11fZQoaAZHQJ7D9JlJ6IFoB03oA2gIR0C0QOyHh0hedX2UKGgGR0CfSZB9Tgl4aAdN6ANoCEdAtEQ9dMTN+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.8", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:282dbdcd0754b4a08635bcf8ace87440fee039fd2d850486e2d785c2f2d9f3a3
|
3 |
+
size 1079482
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1825.6274839748585, "std_reward": 94.90323410108732, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T00:20:19.347882"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90065436bdc5939f885e6082e068eacb03400b795f20b7be2249cbd6efe6a40d
|
3 |
+
size 2136
|