qxakshat commited on
Commit
9060fcb
·
1 Parent(s): ddca15a

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1825.63 +/- 94.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19f333493b1da795f4d798a2f5106f63a5334e547ef74cb7a0f5751a322f4ac
3
+ size 129273
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc97248670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc97248700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc97248790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc97248820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbc972488b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbc97248940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbc972489d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc97248a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbc97248af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc97248b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc97248c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc97248ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fbc97241580>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677948622940320344,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL25lby9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvbmVvL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAETP4z+aOb8+I+f0PiXVaj8FbuM99TTyvgDa5b9sY9G/K7jvvzowhD6FEqM+FM/7vyhNSr/jKYA/7NMuP5Deyb6226O/N4DWPxdn3L6M496/TqeaPz2UAMDENye/iwlkP+v9bb9MLhc/Jh4RP2PAbb80WEo/5TwOv+gTyT6YLsM/zcYpvwAX2D633fg9G4uuvv1FrL1UpLU+lvyyP44M9z4rs64+c9HvvxuDkr6qZcK/4SjgvgRSsL/ICKm92/yMP0KMbj9W/LM+9BQLv6x43b91r4k/TC4XPyYeET9jwG2/XcSpPvHsjr0ZbQQ/A5PRPpybZD+E4ww+SeIXP6ghFL9Y8a292S0AQHYoyj+GSJM+eK+0PwPpFr8DdV4+l0KNP+yk2T6hk+u+VQWyPmayXT/PgR8/rWeWP+fyab9Ghsq/da+JP0wuFz8mHhE/Y8Btv8ZzGr4MVcG/Y9TvvkX3Az0Xi5u/f+0gv0doWr+XAJE/0x8cP/skPr6cRyC/I5ZwPUJ9kL/PGsy/ae8fPip9R7+9cLs8RXIEv1EYor8ZNAE+ZwOzPWs27z/FDH89kYgBwHWviT9MLhc/Jh4RP2PAbb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADfQDG3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2vD4PQAAAAAPGvO/AAAAACUb+70AAAAAnKTsPwAAAAD4p4u9AAAAAOHs4T8AAAAAC2cSPgAAAACztve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+rWMMgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJyasLwAAAAAdVHfvwAAAAARQ6O9AAAAANQm4z8AAAAAMladPQAAAACBjek/AAAAADrFnzwAAAAAemzxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/E8LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBvP2C9AAAAANZR+b8AAAAAGSvWvAAAAAC0YO4/AAAAAI4n570AAAAAXY/aPwAAAAAduDi8AAAAABEX678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACm6Wg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAS64vQAAAABJh+q/AAAAAKhpALwAAAAACVX5PwAAAACGkp49AAAAAFab/j8AAAAA4qEXPAAAAACmn/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxd3MdLg4yMAWyUTegDjAF0lEdAs0yEcGTs6nV9lChoBkdAnJaDNdJJ5GgHTegDaAhHQLNNoQEpy6t1fZQoaAZHQJyC5ymygPFoB03oA2gIR0CzTgQRwqAjdX2UKGgGR0CbieAuqWC3aAdN6ANoCEdAs1Ea2iL2pXV9lChoBkdAnBdrm2b5M2gHTegDaAhHQLNWQ3oLXtl1fZQoaAZHQJtdmptJnQJoB03oA2gIR0CzVyqsEJSjdX2UKGgGR0CdNZ19ORDDaAdN6ANoCEdAs1emll9SdnV9lChoBkdAnAfrQb+98WgHTegDaAhHQLNa1uez2OB1fZQoaAZHQJvoQwco6S1oB03oA2gIR0CzYFUjkdWAdX2UKGgGR0Cbd/XhwVCYaAdN6ANoCEdAs2Fvs3Q2M3V9lChoBkdAmz2OgDifhGgHTegDaAhHQLNh0nk1dgR1fZQoaAZHQJQh+VNYbKloB03oA2gIR0CzZRf1L8JldX2UKGgGR0CbrZvR7Z3+aAdN6ANoCEdAs2o4GUwBYHV9lChoBkdAmTrre67NCGgHTegDaAhHQLNrRFR51Nh1fZQoaAZHQJrVRK5CngpoB03oA2gIR0Cza6wnMMZxdX2UKGgGR0CcuTsfaHsUaAdN6ANoCEdAs26EpXp4bHV9lChoBkdAl5fTjR2KVWgHTegDaAhHQLNzX704BFN1fZQoaAZHQJg+dbA1vVFoB03oA2gIR0CzdFgWzniedX2UKGgGR0CZCRaiblRxaAdN6ANoCEdAs3TQUg0TDnV9lChoBkdAmV5BOgxrSGgHTegDaAhHQLN4EOTaCcx1fZQoaAZHQJlIbWy1NQFoB03oA2gIR0CzfVv3evZAdX2UKGgGR0CZPRMLF4s3aAdN6ANoCEdAs353AfuCw3V9lChoBkdAmLqVqveP72gHTegDaAhHQLN+5h8IAwR1fZQoaAZHQJyHH8EV32VoB03oA2gIR0CzgnrbYbsGdX2UKGgGR0CcoselsP8RaAdN6ANoCEdAs4fOSt/4I3V9lChoBkdAnJTKi48U22gHTegDaAhHQLOI6PgvUSZ1fZQoaAZHQJ1LyOAAhjhoB03oA2gIR0CziVI/iYLLdX2UKGgGR0CfUZp4bCJoaAdN6ANoCEdAs4yK/1xsEnV9lChoBkdAns0/hVENOWgHTegDaAhHQLOSLAlv60p1fZQoaAZHQJxfcELYwqRoB03oA2gIR0CzkyV3t8eCdX2UKGgGR0Ccn1dcB2fTaAdN6ANoCEdAs5Ob8R+SbHV9lChoBkdAmKmBqj8DS2gHTegDaAhHQLOXAH0btJF1fZQoaAZHQJxBMUvf0mNoB03oA2gIR0CznGwdOqNqdX2UKGgGR0CY9GWM0gr6aAdN6ANoCEdAs52JnM+u/3V9lChoBkdAnHzi5mRNh2gHTegDaAhHQLOd70Ltu1p1fZQoaAZHQJrKaKziS7poB03oA2gIR0CzoRatYB/7dX2UKGgGR0CeKYWnTAnEaAdN6ANoCEdAs6ZPwUg0THV9lChoBkdAmeBxnSOR1WgHTegDaAhHQLOnYb+Lm6p1fZQoaAZHQJj/BhfBvaVoB03oA2gIR0Czp8bqUu+RdX2UKGgGR0CX+NTS9du6aAdN6ANoCEdAs6skqlP8AXV9lChoBkdAnbxw9q1w52gHTegDaAhHQLOwpw7T2Fp1fZQoaAZHQJ4ngUahpQFoB03oA2gIR0CzscEfLcKxdX2UKGgGR0CbsVF72L5zaAdN6ANoCEdAs7I5T2nKn3V9lChoBkdAnVcZBgNPQGgHTegDaAhHQLO1qiF0xM51fZQoaAZHQJq8nzSThYNoB03oA2gIR0CzuxEDlo12dX2UKGgGR0CfvH+YtxuLaAdN6ANoCEdAs7wjJT2nKnV9lChoBkdAmXibdznzQWgHTegDaAhHQLO8gGBWge11fZQoaAZHQJ1Aob83uNRoB03oA2gIR0Czv66iKziTdX2UKGgGR0CfwaEkjX4CaAdN6ANoCEdAs8VCW8h9s3V9lChoBkdAnXRVX/5tWWgHTegDaAhHQLPGRFLFn7J1fZQoaAZHQJt+6OyVv/BoB03oA2gIR0CzxrH8fmtAdX2UKGgGR0CbXOTtsvZiaAdN6ANoCEdAs8oPdl/YrnV9lChoBkdAnDXURvm5lWgHTegDaAhHQLPPX+m3vx91fZQoaAZHQJpqVnL7oB9oB03oA2gIR0Cz0EPp6hQFdX2UKGgGR0CdPo925hBraAdN6ANoCEdAs9C751vETHV9lChoBkdAm+AxE8aGYmgHTegDaAhHQLPT9aLn9vV1fZQoaAZHQJ3ZNs54nndoB03oA2gIR0Cz2WRRIjGDdX2UKGgGR0CgDrXJPqLTaAdN6ANoCEdAs9pjQE6kqXV9lChoBkdAnDuR8D0UXmgHTegDaAhHQLPayvOhTOx1fZQoaAZHQJ/K6sEJSixoB03oA2gIR0Cz3hmll9SddX2UKGgGR0CflN4VRDTjaAdN6ANoCEdAs+OdGG21D3V9lChoBkdAnVlqQV9F4WgHTegDaAhHQLPkjxVQyh11fZQoaAZHQJvvO3hGYrtoB03oA2gIR0Cz5O6qbSZ0dX2UKGgGR0CfLvy/bj95aAdN6ANoCEdAs+hG5avA5HV9lChoBkdAnaE5dSl3yWgHTegDaAhHQLPt0yvs7dV1fZQoaAZHQKAtz3eN1hdoB03oA2gIR0Cz7uluR9w4dX2UKGgGR0CdZ8IGQjlgaAdN6ANoCEdAs+9LatcOb3V9lChoBkdAn7Tci0OVgWgHTegDaAhHQLPyoumaYu11fZQoaAZHQJl2YKSgXdloB03oA2gIR0Cz+BTiOvMbdX2UKGgGR0Cc/ieenQ6ZaAdN6ANoCEdAs/km4rjHXHV9lChoBkdAn7Hd5IH1OGgHTegDaAhHQLP5iw2ETQF1fZQoaAZHQJb2p+NLlFNoB03oA2gIR0Cz/NonOSntdX2UKGgGR0Cb3oMo+fRNaAdN6ANoCEdAtAK7EzfrKXV9lChoBkdAnr5sz2vjfmgHTegDaAhHQLQDuNFjNIN1fZQoaAZHQJl0p5IH1OFoB03oA2gIR0C0BEiSvC/HdX2UKGgGR0CYAD68QI2PaAdN6ANoCEdAtAd8l5WzW3V9lChoBkdAnVpeBUaQ3mgHTegDaAhHQLQMoTs6aLJ1fZQoaAZHQJ6ekkxASnNoB03oA2gIR0C0DbIgV45cdX2UKGgGR0CcaxMOf/WEaAdN6ANoCEdAtA4lcRlH0HV9lChoBkdAnVHYJE6T4mgHTegDaAhHQLQRSHkcS5B1fZQoaAZHQJ1MJrZamoBoB03oA2gIR0C0FpFYhdMTdX2UKGgGR0CfaspCrtE5aAdN6ANoCEdAtBd9O8Cgb3V9lChoBkdAn8JphKDkEWgHTegDaAhHQLQX7XaakRB1fZQoaAZHQJ04iQeV9ndoB03oA2gIR0C0GxGeg+QmdX2UKGgGR0CfDPAoXsPbaAdN6ANoCEdAtCBoFHJ9zHV9lChoBkdAmTxHiNsFdWgHTegDaAhHQLQhXk2xY7t1fZQoaAZHQJ0cm6bvw3JoB03oA2gIR0C0IcHSF49pdX2UKGgGR0CekNDb8FY/aAdN6ANoCEdAtCS8jfNzKnV9lChoBkdAnXqFxn3+M2gHTegDaAhHQLQqV6nBLwp1fZQoaAZHQJ43++PBBRhoB03oA2gIR0C0K4hePaL5dX2UKGgGR0Cc5W/Aj6eoaAdN6ANoCEdAtCv6iYb833V9lChoBkdAmdXwCbMHKWgHTegDaAhHQLQvSDSgGr11fZQoaAZHQJ2qzjS5RTFoB03oA2gIR0C0NKh0MgEEdX2UKGgGR0Cc5ncmjTKDaAdN6ANoCEdAtDWhDx9XtHV9lChoBkdAnSisVtXPq2gHTegDaAhHQLQ2IWu5jH51fZQoaAZHQJ8UrZdv865oB03oA2gIR0C0ObYc3l0YdX2UKGgGR0CeKqqSX+l1aAdN6ANoCEdAtD9bCO3lS3V9lChoBkdAnnuvAO8TSWgHTegDaAhHQLRAX3wkPc11fZQoaAZHQJ7D9JlJ6IFoB03oA2gIR0C0QOyHh0hedX2UKGgGR0CfSZB9Tgl4aAdN6ANoCEdAtEQ9dMTN+3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c8c37d0c8bf61bb86456a6fd1f067bcf641f1c36a42bd78f18d261e6f6343c5
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8acbdec3b173539b7c4e4a6a89e2629741e4b9daf3fa48de6bf0ba1cc3872b0
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
2
+ - Python: 3.10.8
3
+ - Stable-Baselines3: 1.8.0a2
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc97248670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc97248700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc97248790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc97248820>", "_build": "<function ActorCriticPolicy._build at 0x7fbc972488b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbc97248940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbc972489d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc97248a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbc97248af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc97248b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc97248c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc97248ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbc97241580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677948622940320344, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL25lby9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvbmVvL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAETP4z+aOb8+I+f0PiXVaj8FbuM99TTyvgDa5b9sY9G/K7jvvzowhD6FEqM+FM/7vyhNSr/jKYA/7NMuP5Deyb6226O/N4DWPxdn3L6M496/TqeaPz2UAMDENye/iwlkP+v9bb9MLhc/Jh4RP2PAbb80WEo/5TwOv+gTyT6YLsM/zcYpvwAX2D633fg9G4uuvv1FrL1UpLU+lvyyP44M9z4rs64+c9HvvxuDkr6qZcK/4SjgvgRSsL/ICKm92/yMP0KMbj9W/LM+9BQLv6x43b91r4k/TC4XPyYeET9jwG2/XcSpPvHsjr0ZbQQ/A5PRPpybZD+E4ww+SeIXP6ghFL9Y8a292S0AQHYoyj+GSJM+eK+0PwPpFr8DdV4+l0KNP+yk2T6hk+u+VQWyPmayXT/PgR8/rWeWP+fyab9Ghsq/da+JP0wuFz8mHhE/Y8Btv8ZzGr4MVcG/Y9TvvkX3Az0Xi5u/f+0gv0doWr+XAJE/0x8cP/skPr6cRyC/I5ZwPUJ9kL/PGsy/ae8fPip9R7+9cLs8RXIEv1EYor8ZNAE+ZwOzPWs27z/FDH89kYgBwHWviT9MLhc/Jh4RP2PAbb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADfQDG3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2vD4PQAAAAAPGvO/AAAAACUb+70AAAAAnKTsPwAAAAD4p4u9AAAAAOHs4T8AAAAAC2cSPgAAAACztve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+rWMMgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJyasLwAAAAAdVHfvwAAAAARQ6O9AAAAANQm4z8AAAAAMladPQAAAACBjek/AAAAADrFnzwAAAAAemzxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/E8LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBvP2C9AAAAANZR+b8AAAAAGSvWvAAAAAC0YO4/AAAAAI4n570AAAAAXY/aPwAAAAAduDi8AAAAABEX678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACm6Wg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAS64vQAAAABJh+q/AAAAAKhpALwAAAAACVX5PwAAAACGkp49AAAAAFab/j8AAAAA4qEXPAAAAACmn/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxd3MdLg4yMAWyUTegDjAF0lEdAs0yEcGTs6nV9lChoBkdAnJaDNdJJ5GgHTegDaAhHQLNNoQEpy6t1fZQoaAZHQJyC5ymygPFoB03oA2gIR0CzTgQRwqAjdX2UKGgGR0CbieAuqWC3aAdN6ANoCEdAs1Ea2iL2pXV9lChoBkdAnBdrm2b5M2gHTegDaAhHQLNWQ3oLXtl1fZQoaAZHQJtdmptJnQJoB03oA2gIR0CzVyqsEJSjdX2UKGgGR0CdNZ19ORDDaAdN6ANoCEdAs1emll9SdnV9lChoBkdAnAfrQb+98WgHTegDaAhHQLNa1uez2OB1fZQoaAZHQJvoQwco6S1oB03oA2gIR0CzYFUjkdWAdX2UKGgGR0Cbd/XhwVCYaAdN6ANoCEdAs2Fvs3Q2M3V9lChoBkdAmz2OgDifhGgHTegDaAhHQLNh0nk1dgR1fZQoaAZHQJQh+VNYbKloB03oA2gIR0CzZRf1L8JldX2UKGgGR0CbrZvR7Z3+aAdN6ANoCEdAs2o4GUwBYHV9lChoBkdAmTrre67NCGgHTegDaAhHQLNrRFR51Nh1fZQoaAZHQJrVRK5CngpoB03oA2gIR0Cza6wnMMZxdX2UKGgGR0CcuTsfaHsUaAdN6ANoCEdAs26EpXp4bHV9lChoBkdAl5fTjR2KVWgHTegDaAhHQLNzX704BFN1fZQoaAZHQJg+dbA1vVFoB03oA2gIR0CzdFgWzniedX2UKGgGR0CZCRaiblRxaAdN6ANoCEdAs3TQUg0TDnV9lChoBkdAmV5BOgxrSGgHTegDaAhHQLN4EOTaCcx1fZQoaAZHQJlIbWy1NQFoB03oA2gIR0CzfVv3evZAdX2UKGgGR0CZPRMLF4s3aAdN6ANoCEdAs353AfuCw3V9lChoBkdAmLqVqveP72gHTegDaAhHQLN+5h8IAwR1fZQoaAZHQJyHH8EV32VoB03oA2gIR0CzgnrbYbsGdX2UKGgGR0CcoselsP8RaAdN6ANoCEdAs4fOSt/4I3V9lChoBkdAnJTKi48U22gHTegDaAhHQLOI6PgvUSZ1fZQoaAZHQJ1LyOAAhjhoB03oA2gIR0CziVI/iYLLdX2UKGgGR0CfUZp4bCJoaAdN6ANoCEdAs4yK/1xsEnV9lChoBkdAns0/hVENOWgHTegDaAhHQLOSLAlv60p1fZQoaAZHQJxfcELYwqRoB03oA2gIR0CzkyV3t8eCdX2UKGgGR0Ccn1dcB2fTaAdN6ANoCEdAs5Ob8R+SbHV9lChoBkdAmKmBqj8DS2gHTegDaAhHQLOXAH0btJF1fZQoaAZHQJxBMUvf0mNoB03oA2gIR0CznGwdOqNqdX2UKGgGR0CY9GWM0gr6aAdN6ANoCEdAs52JnM+u/3V9lChoBkdAnHzi5mRNh2gHTegDaAhHQLOd70Ltu1p1fZQoaAZHQJrKaKziS7poB03oA2gIR0CzoRatYB/7dX2UKGgGR0CeKYWnTAnEaAdN6ANoCEdAs6ZPwUg0THV9lChoBkdAmeBxnSOR1WgHTegDaAhHQLOnYb+Lm6p1fZQoaAZHQJj/BhfBvaVoB03oA2gIR0Czp8bqUu+RdX2UKGgGR0CX+NTS9du6aAdN6ANoCEdAs6skqlP8AXV9lChoBkdAnbxw9q1w52gHTegDaAhHQLOwpw7T2Fp1fZQoaAZHQJ4ngUahpQFoB03oA2gIR0CzscEfLcKxdX2UKGgGR0CbsVF72L5zaAdN6ANoCEdAs7I5T2nKn3V9lChoBkdAnVcZBgNPQGgHTegDaAhHQLO1qiF0xM51fZQoaAZHQJq8nzSThYNoB03oA2gIR0CzuxEDlo12dX2UKGgGR0CfvH+YtxuLaAdN6ANoCEdAs7wjJT2nKnV9lChoBkdAmXibdznzQWgHTegDaAhHQLO8gGBWge11fZQoaAZHQJ1Aob83uNRoB03oA2gIR0Czv66iKziTdX2UKGgGR0CfwaEkjX4CaAdN6ANoCEdAs8VCW8h9s3V9lChoBkdAnXRVX/5tWWgHTegDaAhHQLPGRFLFn7J1fZQoaAZHQJt+6OyVv/BoB03oA2gIR0CzxrH8fmtAdX2UKGgGR0CbXOTtsvZiaAdN6ANoCEdAs8oPdl/YrnV9lChoBkdAnDXURvm5lWgHTegDaAhHQLPPX+m3vx91fZQoaAZHQJpqVnL7oB9oB03oA2gIR0Cz0EPp6hQFdX2UKGgGR0CdPo925hBraAdN6ANoCEdAs9C751vETHV9lChoBkdAm+AxE8aGYmgHTegDaAhHQLPT9aLn9vV1fZQoaAZHQJ3ZNs54nndoB03oA2gIR0Cz2WRRIjGDdX2UKGgGR0CgDrXJPqLTaAdN6ANoCEdAs9pjQE6kqXV9lChoBkdAnDuR8D0UXmgHTegDaAhHQLPayvOhTOx1fZQoaAZHQJ/K6sEJSixoB03oA2gIR0Cz3hmll9SddX2UKGgGR0CflN4VRDTjaAdN6ANoCEdAs+OdGG21D3V9lChoBkdAnVlqQV9F4WgHTegDaAhHQLPkjxVQyh11fZQoaAZHQJvvO3hGYrtoB03oA2gIR0Cz5O6qbSZ0dX2UKGgGR0CfLvy/bj95aAdN6ANoCEdAs+hG5avA5HV9lChoBkdAnaE5dSl3yWgHTegDaAhHQLPt0yvs7dV1fZQoaAZHQKAtz3eN1hdoB03oA2gIR0Cz7uluR9w4dX2UKGgGR0CdZ8IGQjlgaAdN6ANoCEdAs+9LatcOb3V9lChoBkdAn7Tci0OVgWgHTegDaAhHQLPyoumaYu11fZQoaAZHQJl2YKSgXdloB03oA2gIR0Cz+BTiOvMbdX2UKGgGR0Cc/ieenQ6ZaAdN6ANoCEdAs/km4rjHXHV9lChoBkdAn7Hd5IH1OGgHTegDaAhHQLP5iw2ETQF1fZQoaAZHQJb2p+NLlFNoB03oA2gIR0Cz/NonOSntdX2UKGgGR0Cb3oMo+fRNaAdN6ANoCEdAtAK7EzfrKXV9lChoBkdAnr5sz2vjfmgHTegDaAhHQLQDuNFjNIN1fZQoaAZHQJl0p5IH1OFoB03oA2gIR0C0BEiSvC/HdX2UKGgGR0CYAD68QI2PaAdN6ANoCEdAtAd8l5WzW3V9lChoBkdAnVpeBUaQ3mgHTegDaAhHQLQMoTs6aLJ1fZQoaAZHQJ6ekkxASnNoB03oA2gIR0C0DbIgV45cdX2UKGgGR0CcaxMOf/WEaAdN6ANoCEdAtA4lcRlH0HV9lChoBkdAnVHYJE6T4mgHTegDaAhHQLQRSHkcS5B1fZQoaAZHQJ1MJrZamoBoB03oA2gIR0C0FpFYhdMTdX2UKGgGR0CfaspCrtE5aAdN6ANoCEdAtBd9O8Cgb3V9lChoBkdAn8JphKDkEWgHTegDaAhHQLQX7XaakRB1fZQoaAZHQJ04iQeV9ndoB03oA2gIR0C0GxGeg+QmdX2UKGgGR0CfDPAoXsPbaAdN6ANoCEdAtCBoFHJ9zHV9lChoBkdAmTxHiNsFdWgHTegDaAhHQLQhXk2xY7t1fZQoaAZHQJ0cm6bvw3JoB03oA2gIR0C0IcHSF49pdX2UKGgGR0CekNDb8FY/aAdN6ANoCEdAtCS8jfNzKnV9lChoBkdAnXqFxn3+M2gHTegDaAhHQLQqV6nBLwp1fZQoaAZHQJ43++PBBRhoB03oA2gIR0C0K4hePaL5dX2UKGgGR0Cc5W/Aj6eoaAdN6ANoCEdAtCv6iYb833V9lChoBkdAmdXwCbMHKWgHTegDaAhHQLQvSDSgGr11fZQoaAZHQJ2qzjS5RTFoB03oA2gIR0C0NKh0MgEEdX2UKGgGR0Cc5ncmjTKDaAdN6ANoCEdAtDWhDx9XtHV9lChoBkdAnSisVtXPq2gHTegDaAhHQLQ2IWu5jH51fZQoaAZHQJ8UrZdv865oB03oA2gIR0C0ObYc3l0YdX2UKGgGR0CeKqqSX+l1aAdN6ANoCEdAtD9bCO3lS3V9lChoBkdAnnuvAO8TSWgHTegDaAhHQLRAX3wkPc11fZQoaAZHQJ7D9JlJ6IFoB03oA2gIR0C0QOyHh0hedX2UKGgGR0CfSZB9Tgl4aAdN6ANoCEdAtEQ9dMTN+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.8", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:282dbdcd0754b4a08635bcf8ace87440fee039fd2d850486e2d785c2f2d9f3a3
3
+ size 1079482
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1825.6274839748585, "std_reward": 94.90323410108732, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T00:20:19.347882"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90065436bdc5939f885e6082e068eacb03400b795f20b7be2249cbd6efe6a40d
3
+ size 2136