Create new file
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model_index:
|
8 |
+
name: wav2vec2-lg-xlsr-en-speech-emotion-recognition
|
9 |
+
---
|
10 |
+
# Speech Emotion Recognition By Fine-Tuning Wav2Vec 2.0
|
11 |
+
The model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) for a Speech Emotion Recognition (SER) task.]
|
12 |
+
|
13 |
+
Several datasets were used the fine-tune the original model:
|
14 |
+
Surrey Audio-Visual Expressed Emotion (SAVEE) (http://kahlan.eps.surrey.ac.uk/savee/Database.html)
|
15 |
+
- 480 audio files from 4 male actors
|
16 |
+
|
17 |
+
Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) (https://zenodo.org/record/1188976#.YO6yI-gzaUk)
|
18 |
+
- 1440 audio files from 24 professional actors (12 female, 12 male)
|
19 |
+
|
20 |
+
Toronto emotional speech set (TESS) (https://tspace.library.utoronto.ca/handle/1807/24487)
|
21 |
+
- 2800 audio files from 2 female actors
|
22 |
+
|
23 |
+
7 classifcation labels
|
24 |
+
```python
|
25 |
+
emotions = ['angry' 'disgust' 'fear' 'happy' 'neutral' 'sad' 'surprise']
|
26 |
+
```
|
27 |
+
It achieves the following results on the evaluation set:
|
28 |
+
- Loss: 0.5023
|
29 |
+
- Accuracy: 0.8223
|
30 |
+
## Model description
|
31 |
+
More information needed
|
32 |
+
## Intended uses & limitations
|
33 |
+
More information needed
|
34 |
+
## Training and evaluation data
|
35 |
+
More information needed
|
36 |
+
## Training procedure
|
37 |
+
### Training hyperparameters
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 4
|
41 |
+
- eval_batch_size: 4
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 8
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 3
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
Step Training Loss Validation Loss Accuracy
|
53 |
+
500 1.812400 1.365212 0.486258
|
54 |
+
1000 0.887200 0.773145 0.797040
|
55 |
+
1500 0.703500 0.574954 0.852008
|
56 |
+
2000 0.687900 1.286738 0.775899
|
57 |
+
2500 0.649800 0.697455 0.832981
|
58 |
+
3000 0.569600 0.337240 0.892178
|
59 |
+
3500 0.421800 0.307072 0.911205
|
60 |
+
4000 0.308800 0.374443 0.930233
|
61 |
+
4500 0.268800 0.260444 0.936575
|
62 |
+
5000 0.297300 0.302985 0.923890
|
63 |
+
5500 0.176500 0.165439 0.961945
|
64 |
+
6000 0.147500 0.170199 0.961945
|
65 |
+
6500 0.127400 0.155310 0.966173
|
66 |
+
7000 0.069900 0.103882 0.976744
|
67 |
+
7500 0.083000 0.104075 0.974630
|