ppo-LunarLander-v2 / config.json
r0in's picture
Upload PPO LunarLander-v2 trained agent
49051eb verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b27ce13a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b27ce13a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b27ce13a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b27ce13a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7b27ce13aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7b27ce13ab00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b27ce13ab90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b27ce13ac20>", "_predict": "<function ActorCriticPolicy._predict at 0x7b27ce13acb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b27ce13ad40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b27ce13add0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b27ce13ae60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b27ce2d1600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709604379319716265, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1Uuzz79rQ94msZPmbNTr7QJag9kM50PQAAAAAAAAAA5mkAvU9EqD6PFca8K0otvu2Qmb0q3/K8AAAAAAAAAACAFXi97R4OP6UW6LwmUje+BDnYvc76Xj0AAAAAAAAAAMA4+L33F4M/W+IPvtp4mb6HLsK9qHqBvQAAAAAAAAAAs5BZPbyXmT9DJQk+qgOIvusa8TzsTyc+AAAAAAAAAACaeco6E7lMP/3H5LqXQE2+n9+VvJi2Mb4AAAAAAAAAAIADm73xRCc/rg4gvWHxG7707LC9WBSQuwAAAAAAAAAAJuTlvRNZBz910S89eRiFvjFEJL3mLkm8AAAAAAAAAACacQU9r8ShPyNWWT7iIp2+hXfXO747Sj0AAAAAAAAAABosTL0Ty88+kxouvVLjhr513Jy9vfuDvQAAAAAAAAAAZt1Kvf3OGz791A4+oec7vlne6jwPuDc9AAAAAAAAAAAGOwy+zP9AP4LzzrwLAnq+7rCOvbCBkr0AAAAAAAAAAMaRq77Vbz8/yp+jPXyZF74qeyS9MEWovQAAAAAAAAAA5hdCvR8JbD6GcGM9HpdUvmgoFL2/hjg9AAAAAAAAAAAaDJ09H72auU7EIbr3FGa0f27JuhqlPjkAAAAAAACAPzN4Aj12RB0/1l4fvs7KRb4h0iW9CxM7ugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGuv0Zm7J6MAWyUTSECjAF0lEdAk1bL3TNMXnV9lChoBkdAbGs8La24NWgHTWMBaAhHQJNYCVUuL751fZQoaAZHQG3bxs2vStxoB018AWgIR0CTWHBE8aGYdX2UKGgGR0BwA53iaRZEaAdNggFoCEdAk1mV3t8eCHV9lChoBkdAcdQ+jM3ZPGgHTXMBaAhHQJNa4BEKE391fZQoaAZHQHCT7YXfqHJoB017AWgIR0CTW47l7tzCdX2UKGgGR0ByopmFrVOLaAdNeAFoCEdAk1vMry1/lXV9lChoBkdAXBfsZ5zHTGgHTegDaAhHQJNdXd30PH11fZQoaAZHQHH3/+GXXy1oB03DAWgIR0CTXbAggX/HdX2UKGgGR0BvThmVZ9uxaAdNfQFoCEdAk14zollbvHV9lChoBkdAbvtP6be/H2gHTcMBaAhHQJNeVYbKifx1fZQoaAZHQHDoSHM2WIJoB02YAWgIR0CTYMBw++uedX2UKGgGR0Bx1xPgvUSaaAdNaQFoCEdAk3U3vYvnKXV9lChoBkdAcRXqnFYMfGgHTXIBaAhHQJN2god+5OJ1fZQoaAZHQELYYLLIPsloB004AWgIR0CTdqTPBzmwdX2UKGgGR0A+Ug3974SIaAdNKQFoCEdAk3gZFG5MDnV9lChoBkdAa6jaB7NSqGgHTVoBaAhHQJN470pVjqh1fZQoaAZHQHJyzVx0dR1oB005AWgIR0CTedzollbvdX2UKGgGR0BvgnXAdn01aAdNdAFoCEdAk3pkJv5xi3V9lChoBkdAabXBkZrHl2gHTQgDaAhHQJN7CYsunMt1fZQoaAZHQGwnFQMx46hoB01AAWgIR0CTfEN+b3GodX2UKGgGR0BsdF3Ux20RaAdNRgFoCEdAk315x//ecnV9lChoBkdAb9Oj9n9NvmgHTZQBaAhHQJN99gc94eN1fZQoaAZHQHCygK8cuJ1oB02TAWgIR0CTfh2OQyRCdX2UKGgGR0ByeLbmEGqxaAdNNwFoCEdAk39Ojh1klXV9lChoBkdAcb4dV/+bVmgHTZ0BaAhHQJOAJbKRuCR1fZQoaAZHQG9pRbjcVQBoB03SAWgIR0CTgYGZ/kNndX2UKGgGR0BxmcpXp4bCaAdNTgFoCEdAk4HOmNzbOHV9lChoBkdAcYbKKHfuTmgHTUkBaAhHQJOCsq0+kgx1fZQoaAZHQHFoqRU3n6loB013AWgIR0CThIEvTPSldX2UKGgGR0BG3VyvLX+VaAdNJgFoCEdAk4TLEpAlfXV9lChoBkdAcmJdCE6DG2gHTUsBaAhHQJOE8Bnzxw11fZQoaAZHQGIShhpg1FZoB03oA2gIR0CThVsq8UVSdX2UKGgGR0Bw154ptrKvaAdNZgFoCEdAk4aVBMSK33V9lChoBkdAcNazqbBoEmgHTVQBaAhHQJOG8RHww0x1fZQoaAZHQFIoiONo8IRoB00JAWgIR0CThyEWZZ0TdX2UKGgGR0Bsl0l5WzWxaAdNUQFoCEdAk4juEqUeMnV9lChoBkdAcHxtHhCMP2gHTXYBaAhHQJOJJIXj2jB1fZQoaAZHQHDSRKpT/AFoB03gAWgIR0CTiU23KB/adX2UKGgGR0BwxxwFTvRaaAdNYAFoCEdAk4te/k/8mHV9lChoBkdAbw3z0Yj0MGgHTZgBaAhHQJOL1KmKqGV1fZQoaAZHQHD4pavA44poB01yAWgIR0CTjpSF49owdX2UKGgGR0BuEzAnDziCaAdNcAFoCEdAk5ACkj5bhXV9lChoBkdAb4KjB2wFDGgHTU8BaAhHQJOQttdiUgV1fZQoaAZHQG6rRpUPxx1oB01eAWgIR0CTkm0QbuMNdX2UKGgGR0BtLTCWNWELaAdNSgFoCEdAk5M5F1B+nnV9lChoBkdAcBMN0vGp/GgHTXoBaAhHQJOTOiL2pQ11fZQoaAZHQHG616qsEJVoB007AWgIR0CTk0hV2icodX2UKGgGR0BxIlzMibDuaAdNigFoCEdAk5PLQHAymHV9lChoBkdAb7w2itaIN2gHTV8BaAhHQJOUyraM72d1fZQoaAZHQEczthuwX69oB00xAWgIR0CTlXaUA1ejdX2UKGgGR0BwuCzLOiWWaAdNRgJoCEdAk5aPOD8Lr3V9lChoBkdAb0D4nndO7GgHTYEBaAhHQJOZzbrTpgV1fZQoaAZHQHJWTXvphWpoB01QAWgIR0CTmyXZXdTHdX2UKGgGR0Bu4/+uNgjRaAdNgAJoCEdAk5vCMHbAUXV9lChoBkdAcotSKm8/U2gHTa8BaAhHQJOu78YQ8Ol1fZQoaAZHQGv2QzUI9kloB02FAWgIR0CTsLtrsSkCdX2UKGgGR0BvWJOWSlnAaAdNZgFoCEdAk7DRdyDIzXV9lChoBkdAcmKQPI4lyGgHTXIBaAhHQJOx8nw5NoJ1fZQoaAZHQHB+GlqJuVJoB01DAWgIR0CTsk1B+nZTdX2UKGgGR0BJQM5fdAPeaAdNLQFoCEdAk7KlIAfdRHV9lChoBkdAbLsna37UG2gHTWMBaAhHQJOzeR7qptJ1fZQoaAZHQHBdnYUWVNZoB011AWgIR0CTs4R7JGONdX2UKGgGR0BywRrULDyfaAdNaQFoCEdAk7QjzND+i3V9lChoBkdAcJSowEhaDGgHTUoBaAhHQJO0OJwbVBl1fZQoaAZHQHDlw4jrzGxoB008AWgIR0CTtIyiEg4fdX2UKGgGR0BwrqApazNVaAdNlwFoCEdAk7U18kUsWnV9lChoBkdAb0GFjd56dGgHTUMBaAhHQJO4IXUH6dl1fZQoaAZHQGyprAxi5NJoB01sAWgIR0CTuDSVGCqZdX2UKGgGR0BrtVJrcj7iaAdNYQFoCEdAk7ihn8Koh3V9lChoBkdAb02wB5ooNWgHTYMBaAhHQJO9HoJRfnh1fZQoaAZHQGzU3rdFfAtoB01dAWgIR0CTvWal1r6+dX2UKGgGR0ByIkBbOeJ6aAdNPwFoCEdAk723PzFuN3V9lChoBkdAa01KFqSHM2gHTXMBaAhHQJO+StA9mpV1fZQoaAZHQHG3XKKYRd1oB01bAWgIR0CTvo7kn1FpdX2UKGgGR0A04VUuL740aAdNPwFoCEdAk78lKwpvxnV9lChoBkdAb1sMKCxu9GgHTWIBaAhHQJO/m7VawEB1fZQoaAZHQGuP2rfcesBoB01XAWgIR0CTwA4Uvf0mdX2UKGgGR0Bw6zl90A93aAdNWwFoCEdAk8DfnW8RMHV9lChoBkdAbvze1rqMWGgHTU0BaAhHQJPBoaZQYUF1fZQoaAZHQG98aUJOWSloB01mAWgIR0CTwbsUIsy0dX2UKGgGR0BhNS6pYLb6aAdN6ANoCEdAk8HW+PBBRnV9lChoBkdAcB/ACGN70GgHTZ8BaAhHQJPDMrNGEwp1fZQoaAZHQGzYhjFyaNNoB01SAWgIR0CTxTd/8VHndX2UKGgGR0Bvd43gk1MuaAdNhgFoCEdAk8eS4z7/GXV9lChoBkdAbyrxIatLc2gHTVMBaAhHQJPMEF3Y+St1fZQoaAZHQG7PqFIuoP1oB01VAWgIR0CTzGob4rSWdX2UKGgGR0BtMW5OJtSAaAdNUwFoCEdAk80yt3fQ8nV9lChoBkdAcWEMNtqHoGgHTWABaAhHQJPOom4RVZN1fZQoaAZHQG2A3VTaTOhoB01WAWgIR0CTzrDNQj2SdX2UKGgGR0BxOC2CuloEaAdNVQFoCEdAk9Ahw2l2vHV9lChoBkdAcbW889wFT2gHTaUBaAhHQJPQQ7muDBd1fZQoaAZHQGyjzDn/1g9oB01KAWgIR0CT0IBd2PkrdX2UKGgGR0BwTez/p+tsaAdNTwFoCEdAk9DMwYcebXV9lChoBkdAbyvdi2DxsmgHTa8BaAhHQJPRUtCiRGN1fZQoaAZHQG56y7f51vFoB02MAWgIR0CT0Vplz2eydX2UKGgGR0Byg38qFyq/aAdNgwFoCEdAk9KTe9Ba93V9lChoBkdAb7oTtb9qDmgHTYUBaAhHQJPULDKoybh1fZQoaAZHQGp4A13t8eFoB01vAWgIR0CT1Q2/i5uqdX2UKGgGR0BxG9fAsTWYaAdNRwFoCEdAk9VepOvdM3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}