rabuahmad commited on
Commit
1d80146
1 Parent(s): bcfc408

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -3
README.md CHANGED
@@ -1,3 +1,52 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - Alienmaster/SB10k
5
+ - cardiffnlp/tweet_sentiment_multilingual
6
+ - legacy-datasets/wikipedia
7
+ - community-datasets/gnad10
8
+ language:
9
+ - de
10
+ base_model: dbmdz/bert-base-german-uncased
11
+ pipeline_tag: text-classification
12
+ ---
13
+
14
+ ## Tweet Style Classifier (German)
15
+
16
+
17
+ This model is a fine-tuned bert-base-uncased on a binary classification task to determine whether a German text is a tweet or not.
18
+
19
+ The dataset contained about 20K instances, with a 50/50 distribution between the two classes. It was shuffled with a random seed of 42 and split into 80/20 for training/testing.
20
+ The NVIDIA RTX A6000 GPU was used for training three epochs with a batch size of 8. Other hyperparameters were default values from the HuggingFace Trainer.
21
+
22
+ The model was trained in order to evaluate a text style transfer task, converting formal-language texts to tweets.
23
+
24
+ ### How to use
25
+
26
+ ```python
27
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline
28
+
29
+ model_name = "rabuahmad/tweet-style-classifier-de"
30
+
31
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
32
+ tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512)
33
+
34
+ classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer, truncation=True, max_length=512)
35
+
36
+ text = "Gestern war ein schöner Tag!"
37
+
38
+ result = classifier(text)
39
+
40
+ ```
41
+ Label 1 indicates that the text is predicted to be a tweet.
42
+
43
+ ### Evaluation
44
+
45
+ Evaluation results on the test set:
46
+
47
+ | Metric |Score |
48
+ |----------|-----------|
49
+ | Accuracy | 0.99988 |
50
+ | Precision| 0.99901 |
51
+ | Recall | 0.99901 |
52
+ | F1 | 0.99901 |