blip_image_embeddings / pipeline.py
radames's picture
Update pipeline.py
bfe7523
raw
history blame
2.31 kB
from typing import Dict, List, Any, Union
from PIL import Image
import requests
import torch
import base64
import os
from io import BytesIO
from models.blip_feature_extractor import blip_feature_extractor
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class PreTrainedPipeline():
def __init__(self, path=""):
# load the optimized model
self.model_path = os.path.join(path, 'model_large_retrieval_coco.pth')
self.model = blip_feature_extractor(
pretrained=self.model_path,
image_size=384,
vit='large',
med_config=os.path.join(path, 'configs/med_config.json')
)
self.model.eval()
self.model = self.model.to(device)
image_size = 384
self.transform = transforms.Compose([
transforms.Resize((image_size, image_size),
interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
def __call__(self, inputs: Union[str, "Image.Image"]) -> List[float]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,0.8802216053009033,...,-0.7866355180740356,]} containing :
- "feature_vector": A list of floats corresponding to the image embedding.
"""
parameters = {"mode": "image"}
if isinstance(inputs, str):
# decode base64 image to PIL
image = Image.open(
BytesIO(base64.b64decode(inputs))).convert("RGB")
elif isinstance(inputs, "Image.Image"):
image = Image.open(inputs).convert("RGB")
image = self.transform(image).unsqueeze(0).to(device)
text = ""
with torch.no_grad():
feature_vector = self.model(image, text, mode=parameters["mode"])[
0, 0].tolist()
# postprocess the prediction
return feature_vector