Update pipeline.py
Browse files- pipeline.py +1 -3
pipeline.py
CHANGED
@@ -33,7 +33,7 @@ class PreTrainedPipeline():
|
|
33 |
|
34 |
|
35 |
|
36 |
-
def __call__(self,
|
37 |
"""
|
38 |
Args:
|
39 |
data (:obj:):
|
@@ -42,9 +42,7 @@ class PreTrainedPipeline():
|
|
42 |
A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,0.8802216053009033,...,-0.7866355180740356,]} containing :
|
43 |
- "feature_vector": A list of floats corresponding to the image embedding.
|
44 |
"""
|
45 |
-
inputs = data["inputs"]
|
46 |
parameters = {"mode": "image"}
|
47 |
-
|
48 |
# decode base64 image to PIL
|
49 |
image = Image.open(BytesIO(base64.b64decode(inputs)))
|
50 |
image = self.transform(image).unsqueeze(0).to(device)
|
|
|
33 |
|
34 |
|
35 |
|
36 |
+
def __call__(self, inputs: str) -> List[float]:
|
37 |
"""
|
38 |
Args:
|
39 |
data (:obj:):
|
|
|
42 |
A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,0.8802216053009033,...,-0.7866355180740356,]} containing :
|
43 |
- "feature_vector": A list of floats corresponding to the image embedding.
|
44 |
"""
|
|
|
45 |
parameters = {"mode": "image"}
|
|
|
46 |
# decode base64 image to PIL
|
47 |
image = Image.open(BytesIO(base64.b64decode(inputs)))
|
48 |
image = self.transform(image).unsqueeze(0).to(device)
|