Triton-InternVL2-2B / modeling_intern_vit.py
radna's picture
Upload 20 files
5c0cb68 verified
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from timm.models.layers import DropPath
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_intern_vit import InternVisionConfig
try:
from triton_flash_atn import _attention
from triton_bert_pading import pad_input, unpad_input
has_flash_attn = True
except:
print("FlashAttention is not installed.")
has_flash_attn = False
logger = logging.get_logger(__name__)
class FlashAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(
self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None
):
super().__init__()
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def forward(
self,
qkv,
key_padding_mask=None,
causal=False,
cu_seqlens=None,
max_s=None,
need_weights=False,
):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
if unpadded: (nnz, 3, h, d)
key_padding_mask: a bool tensor of shape (B, S)
"""
assert not need_weights
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
if cu_seqlens is None:
batch_size = qkv.shape[0]
seqlen = qkv.shape[1]
if key_padding_mask is None:
qkv = rearrange(qkv, "b s ... -> (b s) ...")
max_s = seqlen
cu_seqlens = torch.arange(
0,
(batch_size + 1) * seqlen,
step=seqlen,
dtype=torch.int32,
device=qkv.device,
)
output = _attention.apply(
qkv,
cu_seqlens,
max_s,
self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
)
output = rearrange(output, "(b s) ... -> b s ...", b=batch_size)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads
)
output_unpad = _attention.apply(
x_unpad,
cu_seqlens,
max_s,
self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
)
output = rearrange(
pad_input(
rearrange(output_unpad, "nnz h d -> nnz (h d)"),
indices,
batch_size,
seqlen,
),
"b s (h d) -> b s h d",
h=nheads,
)
else:
assert max_s is not None
output = _attention.apply(
qkv,
cu_seqlens,
max_s,
self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
)
return output, None
class InternRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
try:
from apex.normalization import FusedRMSNorm
InternRMSNorm = FusedRMSNorm # noqa
logger.info(
"Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm"
)
except ImportError:
# using the normal InternRMSNorm
pass
except Exception:
logger.warning(
"discovered apex but it failed to load, falling back to InternRMSNorm"
)
pass
NORM2FN = {
"rms_norm": InternRMSNorm,
"layer_norm": nn.LayerNorm,
}
class InternVisionEmbeddings(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(
torch.randn(1, 1, self.embed_dim),
)
self.patch_embedding = nn.Conv2d(
in_channels=3,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(
torch.randn(1, self.num_positions, self.embed_dim)
)
def _get_pos_embed(self, pos_embed, H, W):
target_dtype = pos_embed.dtype
pos_embed = (
pos_embed.float()
.reshape(
1,
self.image_size // self.patch_size,
self.image_size // self.patch_size,
-1,
)
.permute(0, 3, 1, 2)
)
pos_embed = (
F.interpolate(pos_embed, size=(H, W), mode="bicubic", align_corners=False)
.reshape(1, -1, H * W)
.permute(0, 2, 1)
.to(target_dtype)
)
return pos_embed
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(
pixel_values
) # shape = [*, channel, width, height]
batch_size, _, height, width = patch_embeds.shape
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
position_embedding = torch.cat(
[
self.position_embedding[:, :1, :],
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width),
],
dim=1,
)
embeddings = embeddings + position_embedding.to(target_dtype)
return embeddings
class InternAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.use_flash_attn = config.use_flash_attn and has_flash_attn
if config.use_flash_attn and not has_flash_attn:
print(
"Warning: Flash Attention is not available, use_flash_attn is set to False."
)
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attention_dropout)
self.proj_drop = nn.Dropout(config.dropout)
self.qk_normalization = config.qk_normalization
if self.qk_normalization:
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
if self.use_flash_attn:
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
def _naive_attn(self, x):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = (
self.q_norm(q.transpose(1, 2).flatten(-2, -1))
.view(B_, N_, H_, D_)
.transpose(1, 2)
)
k = (
self.k_norm(k.transpose(1, 2).flatten(-2, -1))
.view(B_, N_, H_, D_)
.transpose(1, 2)
)
attn = (q * self.scale) @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
qkv = self.qkv(x)
qkv = rearrange(
qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads
)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
causal=False,
)
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
outs = self.proj_drop(outs)
return outs
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = (
self._naive_attn(hidden_states)
if not self.use_flash_attn
else self._flash_attn(hidden_states)
)
return x
class InternMLP(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.act = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class InternVisionEncoderLayer(nn.Module):
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
super().__init__()
self.embed_dim = config.hidden_size
self.intermediate_size = config.intermediate_size
self.norm_type = config.norm_type
self.attn = InternAttention(config)
self.mlp = InternMLP(config)
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.drop_path1 = (
DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
)
self.drop_path2 = (
DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
)
def forward(
self,
hidden_states: torch.Tensor,
) -> Tuple[
torch.FloatTensor,
Optional[torch.FloatTensor],
Optional[Tuple[torch.FloatTensor]],
]:
"""
Args:
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
"""
hidden_states = hidden_states + self.drop_path1(
self.attn(self.norm1(hidden_states)) * self.ls1
)
hidden_states = hidden_states + self.drop_path2(
self.mlp(self.norm2(hidden_states)) * self.ls2
)
return hidden_states
class InternVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`InternEncoderLayer`].
Args:
config (`InternConfig`):
The corresponding vision configuration for the `InternEncoder`.
"""
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [
x.item()
for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
]
self.layers = nn.ModuleList(
[
InternVisionEncoderLayer(config, dpr[idx])
for idx in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = True
def forward(
self,
inputs_embeds,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Embedded representation of the inputs. Should be float, not int tokens.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
encoder_states = () if output_hidden_states else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = torch.utils.checkpoint.checkpoint(
encoder_layer, hidden_states
)
else:
layer_outputs = encoder_layer(
hidden_states,
)
hidden_states = layer_outputs
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states
)
class InternVisionModel(PreTrainedModel):
main_input_name = "pixel_values"
config_class = InternVisionConfig
_no_split_modules = ["InternVisionEncoderLayer"]
def __init__(self, config: InternVisionConfig):
super().__init__(config)
self.config = config
self.embeddings = InternVisionEmbeddings(config)
self.encoder = InternVisionEncoder(config)
def resize_pos_embeddings(self, old_size, new_size, patch_size):
pos_emb = self.embeddings.position_embedding
_, num_positions, embed_dim = pos_emb.shape
cls_emb = pos_emb[:, :1, :]
pos_emb = (
pos_emb[:, 1:, :]
.reshape(1, old_size // patch_size, old_size // patch_size, -1)
.permute(0, 3, 1, 2)
)
pos_emb = F.interpolate(
pos_emb.float(),
size=new_size // patch_size,
mode="bicubic",
align_corners=False,
)
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
self.embeddings.position_embedding = nn.Parameter(pos_emb)
self.embeddings.image_size = new_size
logger.info(
"Resized position embeddings from {} to {}".format(old_size, new_size)
)
def get_input_embeddings(self):
return self.embeddings
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_embeds: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if pixel_values is None and pixel_embeds is None:
raise ValueError("You have to specify pixel_values or pixel_embeds")
if pixel_embeds is not None:
hidden_states = pixel_embeds
else:
if len(pixel_values.shape) == 4:
hidden_states = self.embeddings(pixel_values)
else:
raise ValueError(f"wrong pixel_values size: {pixel_values.shape}")
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = last_hidden_state[:, 0, :]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)