--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: Raffel_bert_emotion_classification results: [] --- # Raffel_bert_emotion_classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3423 - Accuracy: 0.9596 I train this model from kaggle dataset, you can access the dataset via this link : https://www.kaggle.com/datasets/abdallahwagih/emotion-dataset ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 167 | 0.1212 | 0.9579 | | No log | 2.0 | 334 | 0.1362 | 0.9596 | | 0.1622 | 3.0 | 501 | 0.2034 | 0.9596 | | 0.1622 | 4.0 | 668 | 0.2035 | 0.9630 | | 0.1622 | 5.0 | 835 | 0.2153 | 0.9630 | | 0.017 | 6.0 | 1002 | 0.2010 | 0.9613 | | 0.017 | 7.0 | 1169 | 0.2718 | 0.9579 | | 0.017 | 8.0 | 1336 | 0.2641 | 0.9613 | | 0.0099 | 9.0 | 1503 | 0.2524 | 0.9613 | | 0.0099 | 10.0 | 1670 | 0.2918 | 0.9579 | | 0.0099 | 11.0 | 1837 | 0.2749 | 0.9562 | | 0.0029 | 12.0 | 2004 | 0.3133 | 0.9562 | | 0.0029 | 13.0 | 2171 | 0.2952 | 0.9579 | | 0.0029 | 14.0 | 2338 | 0.3334 | 0.9596 | | 0.0022 | 15.0 | 2505 | 0.3286 | 0.9596 | | 0.0022 | 16.0 | 2672 | 0.3340 | 0.9596 | | 0.0022 | 17.0 | 2839 | 0.3344 | 0.9596 | | 0.0013 | 18.0 | 3006 | 0.3395 | 0.9596 | | 0.0013 | 19.0 | 3173 | 0.3423 | 0.9596 | | 0.0013 | 20.0 | 3340 | 0.3423 | 0.9596 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1